## Constant & Variable air volume controllers Air volume the smart way





# Disclose the secret of fresh air!



Systemair has been taking care of Indoor Air Quality (IAQ) as an essential resource since 1974. Today Systemair is one of the leading ventilation companies worldwide. A success story, which started in Skinnskatteberg, Sweden with the invention of the inline duct fan. This invention revolutionised the ventilation world. Since then the company has continuously advanced and now offers a comprehensive range of products for all ventilation requirements. The expert at Systemair have the required knowledge and understanding in finding solutions when considering the ventilation of shopping

centres, domestic ventilation of a family home to the complex ventilation of tunnels and metro stations. More than 3000 employees and in excess of 60 subsidiaries in 44 countries globally we are available to our customers.

With this catalogue which features air distribution products and accessories we give you as our customer a general overview of what Systemair can offer within this range.

#### Quality

Systemair has been certified according to ISO 9001, ISO 14001 and ATEX. Our R&D centre remains one of the most modern facilities in Europe. We test in compliance with the international standards EN, ISO and AMCA.

© Systemair 2012. Systemair reserves the right to make technical changes.



## CONTENTS

| Systemair                      | 4-5   |
|--------------------------------|-------|
| A good indoor climate is vital | 6-7   |
| Optima-R                       | 8-10  |
| Optima-RI                      | 11-13 |
| Optima-RS                      | 14-16 |
| Accessories                    | 17-20 |
| Room controllers               |       |
| Presence detectors             | 32-35 |
| Optima controller solutions    |       |
| Cooling and Heating batteries  | 45-59 |
| Group product range            | 60-61 |



# Systemair worldwide



#### Skinnskatteberg, Sweden:

Systemair AB, the Systemair group head office in Skinnskatteberg, Sweden. The production is virtually fully automated with modern machinery featuring advanced computer support. Also located here is the company's most advanced test installation for measuring technical data.

#### Windischbuch, Germany:

Production facility for fans and modular air handling units, specialized on engineered products (e.g. tunnel and jet fans). Distribution center.

#### Hässleholm, Sweden:

VEAB is the leading European manufacturer of electric duct heaters. Production of heating and cooling coils, electric and water based.

#### Ukmerge, Lithuania:

Production of smaller air handling units with energy recovery systems.

#### Maribor, Slovenia:

Specialized in centrifugal smoke extract fans, EN certified.





Quality: Systemair is certified in accordance with ISO 9001; ISO 14001 and ATEX. Our research and development laboratories are one of the most modern in Europe; measurements are made in accordance with international standards like AMCA and ISO.



Save energy, lower running cost! Our label "Green Ventilation" features products with a high energy saving potential. All products labelled with "Green Ventilation" combine energy economy with energy efficiency.



Hasselager, Denmark: Production of air handling units.

#### Bratislava, Slovakia:

The factory in Bratislava manufactures air distribution products and EN certified fire and smoke dampers.

#### Delhi / Hyderabad, India

The factories in India manufactures air handling units, air distribution products & fans.

#### Kuala Lumpur, Malaysia : Manufacturing of products for the Asian market.

Madrid, Spain: Production of air handling units.

Kansas City, USA: Production of fans for the US market.

#### Bouctouche, Canada:

Manufacturing of duct fans and heat exchangers used in residential ventilation for the North American market.

#### Dal, Eidsvoll, Norway:

Production of air handling units for the Norwegian market.

![](_page_4_Picture_18.jpeg)

![](_page_5_Picture_1.jpeg)

#### Offices

Office buildings generally require good ventilation during the day as well as heat and cooling recovery and reconditioning of supply air depending on external conditions. Ventilation systems with demand control should be considered for offices where staffing levels vary. As a rule, offices develop an excess of heat produced by people, lighting, solar radiation, computer equipment, etc. In many cases there is a need to cool the air and prevent uncomfortable high temperatures. In larger buildings that accumulate heat energy easily, you should consider employing night cooling. If the office is in a city environment, a higher filtration class should be used. In an office environment, there is also considerable need to reduce the noise generated by the ventilation system.

#### Schools and nurseries

A school environment means a lot of people present at certain times of the day, i.e. generally there are relatively large variations. This means that it should be possible to use demand control for the ventilation system. Normally, with heat and/or cool recovery is warranted. There will be short periods during the year when heating may be required. However if there is effective sunscreening, then air reconditioning is rarely required. High demand for low noise levels. At day nurseries, activities such as cooking that create odours are common, so there is often a need for supply air and extract air to be kept separate. There must be heat recovery in the form of a plate heat exchanger, for example.

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

#### Shops

As a rule, the number of people in a shop changes constantly throughout the day, making a control-on-demand ventilation system the sensible option. Recirculating air in combination with carbon dioxide control  $(CO_2)$  and heat recovery can be one optimised solution for these types of premises. When there are few people present,  $CO_2$ levels will be low and an increased amount of return air can be mixed into the system. As the number of people present increases, the amount of return air is reduced and replaced with fresh outdoor air. If heating is required at night-time, the premises are warmed up using 100% recirculating air.

![](_page_5_Picture_10.jpeg)

#### Industry

Industrial premises will often have high airflows if the work carried out there generates high levels of air pollution. If the pollutants are also aggressive, there may be requirements that affect the choice of material used. Systemair offers products for different environmental classes that can cope with tough environments. Filtration of processed air can be adapted to suit specific demands.

![](_page_6_Picture_3.jpeg)

#### Hotels

The requirements for conditioning in hotels are characterised by demands relating to fire protection, demand control and low noise levels. The choice of air handling unit will probably be affected by these demands. What is important here is good functions for speed control and quiet operation. In addition to quiet air handling units with demand control, Systemair can also supply fans and dampers for fire protection.

![](_page_6_Picture_6.jpeg)

#### Healthcare premises

Healthcare premises can encompass numerous activities, everything from operating theatres to wards. The activity determines the requirements. Operating theatres will have stringent demands for cleanliness and ventilation. Wards require low noise levels. If several areas are served by the same system, the unit must have demand control and possibly even subsystems. Systemair's range of air handling units can satisfy all requirements relating to healthcare premises, whether these have to do with air cleanliness, noise levels or demand control.

![](_page_6_Picture_9.jpeg)

![](_page_6_Picture_10.jpeg)

![](_page_7_Picture_1.jpeg)

#### **General Description**

In Variable Air Volume (VAV) systems, supply of cool air increases as the cooling load increases, and the air supply decreases as the load decreases.

VAV systems are the most modern, energy efficient all air systems available for comfort air conditioning. VAV systems require less fan capacity than a comparable constant volume system because with VAV only the required air is used. Typically a VAV system fan volume is 60% of a CAV system.

Control of air flow in a VAV system is accomplished through an electronic device, which regulate the amount of supply air to the space in response to a proportional room/space temperature controller.

#### Pressure Independent

Systemair VAV units are pressure independent The accurate volume control achieved by pressure independent VAV units results in substantial energy savings as well as increased comfort to the occupant. Conditioned air volume is precisely regulated according to demand. A maximum air volume setting avoids drafty air distribution; a minimum air volume setting avoids cold air dumping and stuffiness.

Minimum and Maximum air flow requirements are set to suit the space application. "Pressure independent units have controls consisting of an inlet duct sensor, damper, controller/actuator and room temperature controller". The VAV device controls the air supply volume through the inlet duct velocity pressure sensor to maintain air flow, as the air-conditioning load in the space changes the thermostat signal will reset the VAV controller to change the supply air volume to suit the space requirements. At any given setting, the controller will maintain the required air volume regardless of inlet static pressure changing. This mode of operation is called "Pressure Independent".

Variable Air Volume units allow the design to take full advantage of shifting loads from lights, occupancy, solar and equipment diversity, which typically leads up to a 40% saving in the total air volume required. Consequently, the central plant and ducting would cost less, thus compensating for the additional cost of VAV terminal units and fan speed controls.

Systemair offers complete range of VAV's factory tested and calibrated. The VAV range offered are as following:

- 1. Round single skin VAV units (Optima-R), used in installations for return or supply air in low pressure systems as single-zone control
- 2. Round double skin VAV units (Optima-R-I), used in installations for return or supply air in medium to high pressure systems as single-zone control
- 3. Round to rectangular single skin insulated VAV units (Optima-R-S), used in installations for return or supply air in medium to high pressure systems as multi-zone control

#### **Benefits**

The VAV system offers some advantage and benefits over conventional systems as given below

- Fan energy savings from longhour usage at reduced volumes, also installed fan horsepower reductions.
- Greater flexibility in respect to varying loads, which are easier zoned, resulting in occupancy controlled comfort and energy saving.
- Reduced installation and set-up cost.
- Reduced system energy consumption cost.
- Single unit for easy mounting.
- Integrated high efficiency sound attenuator.
- Suited for mounting of all controls according to customer specification.
- Accurate air volume control with centre averaging multi-point airflow differential cross velocity pressure sensor.

![](_page_7_Picture_25.jpeg)

# **RDA** Self regulating constant air volume

![](_page_8_Picture_2.jpeg)

#### Function

The air flow regulator RDA is an element placed inside the duct in order to obtain a constant flow within a pressure range from 50 to 200 Pascal. It is used in ventilation or air conditioning systems for supply or return air. The air is forced to pass through predetermined space in which a flap can change the position according to the specified air flow. The flap is attached on to a calibrated spring and therefore no auxiliary power is needed.

#### Design

RDA is made from plastic material (polystyrene) classified M1 in grey colour. Maximum temperature is 60°C.

#### Mounting

RDA is inserted directly into a horizontal or vertical circular duct. It is fixed and kept airtight by a lip seal. Arrow indicates the airflow. If the unit is placed in supply duct, the space between the diffuser and the unit must be at least 3x diameter of the duct. If used for return air the space must be 1x diameter of the duct.

#### Ordering Code

RDA-80/15 80 - size 15 - air volume

Flow regulators are characterized by their noise level in dB(A).

| Airflow | Lw dB(A) |        |        |        |
|---------|----------|--------|--------|--------|
| (m³/h)  | 50 Pa    | 100 Pa | 150 Pa | 200 Pa |
| 15      | 25       | 29     | 32     | 35     |
| 30      | 26       | 31     | 35     | 38     |
| 45      | 27       | 33     | 36     | 39     |
| 60      | 32       | 37     | 39     | 42     |
| 75      | 32       | 37     | 40     | 42     |
| 90      | 32       | 38     | 41     | 44     |
| 120     | 30       | 34     | 39     | 42     |
| 150     | 33       | 37     | 41     | 45     |
| 180     | 34       | 40     | 44     | 47     |
| 210     | 34       | 40     | 42     | 44     |
| 240     | 35       | 41     | 44     | 47     |
| 270     | 37       | 43     | 45     | 49     |
| 300     | 33       | 37     | 42     | 45     |
|         |          |        |        |        |

Tests reports : CETIAT 2315002 for air flow RD  $\emptyset$ 80 to RD  $\emptyset$ 125 mm

#### Dimensions

![](_page_8_Figure_15.jpeg)

| Size | L (mm) | D1 (mm) | D2 (mm) |
|------|--------|---------|---------|
| 80   | 55     | 76      | 73      |
| 100  | 60     | 96      | 93      |
| 125  | 90     | 120     | 117     |
| 160  | 89     | 456     | 147     |

\*spacer = special body without spacers

 $1^*$  air flow = special shims with air flow ref.

#### Diagram

![](_page_8_Figure_20.jpeg)

![](_page_8_Picture_21.jpeg)

A flow regulator can provide several flow rates by simply changing the number of calibrated Shims positioned within the casing. The tables below show the relationship between the number of Shims, Spacers required to achieve the flow rates.

![](_page_9_Picture_2.jpeg)

| Spacer |
|--------|
|        |

|        | 15 m³/h | 2 Shims          |
|--------|---------|------------------|
| RD Ø80 | 30 m³/h | 1 Shim           |
|        | 45 m³/h | Without any Shim |

|                       | 15 m³/h | 2 Shims          |
|-----------------------|---------|------------------|
| RD Ø100<br>(1 Spacer) | 30 m³/h | 1 Shim           |
| (T Spacer)            | 45 m³/h | Without any Shim |

|         | 60 m³/h | 2 Shims          |
|---------|---------|------------------|
| RD Ø100 | 75 m³/h | 1 Shim           |
|         | 90 m³/h | Without any Shim |

![](_page_9_Picture_7.jpeg)

| 22 6125     | 15 m³/h | 2 Shims          |
|-------------|---------|------------------|
| RD Ø 125    | 30 m³/h | 1 Shim           |
| (z spacers) | 45 m³/h | Without any Shim |

| 00 6125               | 60 m³/h | 2 Shims          |
|-----------------------|---------|------------------|
| RD Ø125<br>(1 Spacer) | 75 m³/h | 1 Shim           |
| (T Spacer)            | 90 m³/h | Without any Shim |

|         | 120 m³/h | 2 Shims          |
|---------|----------|------------------|
| RD Ø125 | 150 m³/h | 1 Shim           |
|         | 180 m³/h | Without any Shim |

![](_page_9_Picture_11.jpeg)

|             | 60 m³/h | 2 Shims          |
|-------------|---------|------------------|
| RD Ø150/160 | 75 m³/h | 1 Shim           |
| (_ )pecces, | 90 m³/h | Without any Shim |

|                           | 120 m³/h | 2 Shims          |
|---------------------------|----------|------------------|
| RD Ø150/160<br>(1 Spacer) | 150 m³/h | 1 Shim           |
|                           | 180 m³/h | Without any Shim |

|               | 210 m³/h | 3 Shims          |
|---------------|----------|------------------|
| DD Ø150/160   | 240 m³/h | 2 Shims          |
| KU Ø 1507 160 | 270 m³/h | 1 Shim           |
|               | 300 m³/h | Without any Shim |

![](_page_9_Picture_15.jpeg)

![](_page_10_Picture_1.jpeg)

|         | 120 m³/h | 2 Shims          |
|---------|----------|------------------|
| RD Ø200 | 150 m³/h | 1 Shim           |
|         | 180 m³/h | Without any Shim |

|            | 210 m³/h | 3 Shims          |
|------------|----------|------------------|
| RD Ø200    | 240 m³/h | 2 Shims          |
| (1 Spacer) | 270 m³/h | 1 Shim           |
|            | 300 m³/h | Without any Shim |

|         | 350 m³/h | 1 Air Flow<br>Dependant Shim |
|---------|----------|------------------------------|
| RD Ø200 | 400 m³/h | 1 Air Flow<br>Dependant Shim |
|         | 450 m³/h | 1 Air Flow<br>Dependant Shim |
|         | 500 m³/h | Without any Shim             |

![](_page_10_Picture_5.jpeg)

|                        | 120 m³/h | 2 Shims          |  |
|------------------------|----------|------------------|--|
| KD Ø250<br>(3 Spacers) | 150 m³/h | 1 Shim           |  |
| (3 Spacers)            | 180 m³/h | Without any Shim |  |

| RD Ø250<br>(2 Spacers) | 210 m³/h | 3 Shims          |  |
|------------------------|----------|------------------|--|
|                        | 240 m³/h | 2 Shims          |  |
|                        | 270 m³/h | 1 Shim           |  |
|                        | 300 m³/h | Without any Shim |  |

| RD Ø250<br>(1 Spacer) | 350 m³/h | 1 Air Flow<br>Dependant Shim |
|-----------------------|----------|------------------------------|
|                       | 400 m³/h | 1 Air Flow<br>Dependant Shim |
|                       | 450 m³/h | 1 Air Flow<br>Dependant Shim |
|                       | 500 m³/h | Without any Shim             |

| RD Ø250 | 550 m³/h | 3 Shims          |  |
|---------|----------|------------------|--|
|         | 600 m³/h | 2 Shims          |  |
|         | 650 m³/h | 1 Shim           |  |
|         | 700 m³/h | Without any Shim |  |

![](_page_10_Picture_10.jpeg)

![](_page_11_Picture_1.jpeg)

# **RPK-R & RPK-R-I** Constant air flow regulator

#### Description

RPK-R is a round constant air flow regulator which is used for exact mechanical setting of required air volume in ventilation systems without need of any other energy. RPK-R is available in two versions:

RPK-R without outside insulation.

RPK-R-I with outside 50 mm thick heat and sound insulation.

#### RPK-R is characterized by:

- regulation accuracy
- easy mounting
- maintenance-free
- tight connection with the duct

#### Design

The RPK-R is manufactured from galvanized sheet metal only the blade is from aluminium. All steel parts are zinc plated, spring is made from high quality steel. Sliding bearing is suitable for high temperatures and doesn't require any lubrication. The cover of adjusting mechanism is made from ABS plastic and the plastic functional parts are from PA plastic. The outside insulation is made from 50 mm thick glass fiber material with outside steel casing.

#### Function

The RPK-R enables regulation of individually required amounts of air in separate ventilation system zones. RPK-R works in temperature from -20 to 80°C and relative humidity up to 80%. Recommended air flow velocity is from 3 to 8 meters per second at pressure difference to  $\Delta p$  500 Pa. Accuracy is ±5 %(±10% for outer settings).

#### Mounting

Regulator can be mounted to horizontal, diagonal or vertical duct. The blade must be always horizontal. It is necessary to pay attention to correct direction of mounting, so that the air is entering the regulator according to the arrow direction, which is located on regulator casing. Connecting the duct and the regulator is done according to its size with grub screws Ø3,2x13 to Ø3,9x16, or with rivets of the same diameters and the connection is sealed with sealing tape. After mounting, set the required air volume by turning the working screw on the controller box.

![](_page_11_Picture_18.jpeg)

![](_page_11_Figure_19.jpeg)

RPK-R main dimensions

![](_page_11_Figure_21.jpeg)

![](_page_11_Figure_22.jpeg)

![](_page_11_Figure_23.jpeg)

| Size | v<br>(m.s⁻¹) | q<br>(m³.h <sup>-1</sup> ) | øD<br>(mm) | øD2<br>(mm) | L<br>(mm) | L1<br>(mm) | L2<br>(mm) | L3<br>(mm) | m<br>(kg) | m(i)<br>(kg) |
|------|--------------|----------------------------|------------|-------------|-----------|------------|------------|------------|-----------|--------------|
| 80   | 4,3-8,4      | 75-140                     | 78         | 170         | 350       | 260        | 76         | 123        | 0,8       | 1,7          |
| 100  | 3,7-7,5      | 100-200                    | 97         | 190         | 350       | 260        | 86         | 136        | 1         | 2,1          |
| 125  | 3,2-7,1      | 125-300                    | 122        | 215         | 360       | 270        | 100        | 148        | 1,2       | 2,4          |
| 140  | 3,6-6,4      | 190-340                    | 137        | 230         | 370       | 280        | 107        | 156        | 1,4       | 2,8          |
| 160  | 4,3-8,9      | 300-620                    | 157        | 250         | 380       | 290        | 117        | 166        | 1,6       | 3,2          |
| 180  | 2,8-8,1      | 250-720                    | 177        | 270         | 390       | 300        | 128        | 176        | 1,9       | 3,6          |
| 200  | 3,2-7,3      | 350-800                    | 197        | 290         | 400       | 310        | 138        | 186        | 2,1       | 4            |
| 250  | 3,8-7,5      | 650-1300                   | 247        | 340         | 425       | 335        | 164        | 208        | 3,3       | 5,8          |
| 315  | 3,1-6,0      | 850-1650                   | 312        | 405         | 500       | 410        | 196        | 243        | 5         | 8,3          |

#### Technical part

| Size | q<br>(m³.h⁻¹) | q<br>(I.s <sup>-1</sup> ) | Accuracy<br>(%) | Pmin<br>(Pa) |
|------|---------------|---------------------------|-----------------|--------------|
|      | 75            | 20,8                      | 15              | 100          |
| 00   | 100           | 27,8                      | 15              | 100          |
| 00   | 120           | 33,3                      | 10              | 100          |
|      | 140           | 38,9                      | 10              | 100          |
|      | 100           | 27,8                      | 15              | 65           |
| 100  | 150           | 41,7                      | 10              | 65           |
| 100  | 175           | 48,6                      | 10              | 80           |
|      | 200           | 55,6                      | 10              | 100          |
|      | 125           | 34,7                      | 15              | 65           |
| 175  | 200           | 55,6                      | 10              | 65           |
| 125  | 250           | 69,4                      | 10              | 80           |
|      | 300           | 83,3                      | 10              | 100          |
|      | 190           | 52,8                      | 15              | 65           |
| 140  | 250           | 69,4                      | 10              | 65           |
| 140  | 300           | 83,3                      | 10              | 80           |
|      | 340           | 94,4                      | 10              | 100          |
|      | 300           | 83,3                      | 15              | 65           |
| 160  | 400           | 111,1                     | 10              | 65           |
| 100  | 500           | 138,9                     | 10              | 80           |
|      | 620           | 172,2                     | 10              | 100          |
|      | 250           | 69,4                      | 15              | 65           |
| 190  | 400           | 111,1                     | 10              | 65           |
| 100  | 600           | 166,7                     | 10              | 80           |
|      | 720           | 200,0                     | 10              | 100          |
|      | 350           | 97,2                      | 15              | 65           |
| 200  | 500           | 138,9                     | 10              | 65           |
| 200  | 700           | 194,4                     | 10              | 80           |
|      | 800           | 222,2                     | 10              | 90           |
|      | 650           | 180,6                     | 15              | 65           |
| 250  | 900           | 250,0                     | 10              | 65           |
| 250  | 1100          | 305,6                     | 10              | 80           |
|      | 1300          | 361,1                     | 10              | 90           |
|      | 850           | 236,1                     | 15              | 65           |
| 315  | 1200          | 333,3                     | 10              | 65           |
|      | 1500          | 416,7                     | 10              | 80           |
|      | 1650          | 458,3                     | 10              | 90           |

![](_page_12_Figure_4.jpeg)

![](_page_12_Figure_5.jpeg)

Way of mounting RPK-R and RPK-R-I

![](_page_12_Picture_7.jpeg)

![](_page_13_Picture_1.jpeg)

# RPK-S and RPK-S-I

Constant air flow regulator

#### Description

RPK-S is a square constant air flow regulator which is used for exact mechanical setting of required air volume in ventilation systems without need of any other energy. RPK-S is available in two versions:

RPK-S without outside insulation.

RPK-S-I with outside 50 mm thick heat and sound insulation.

#### RPK-S is characterized by:

- regulation accuracy
- easy mounting
- maintenance-free

#### Design

The RPK-S is manufactured from galvanized sheet metal only the blade is from aluminium. All steel parts are zinc plated, spring is made from high quality steel. Sliding bearing is suitable for high temperatures and doesn't require any lubrication. The cover of adjusting mechanism is made from ABS plastic and the plastic functional parts are from PA plastic. The outside insulation is made from 50 mm thick glass fiber material with outside steel casing.

#### Function

The RPK-S enables regulation of individually required amounts of air in separate ventilation system zones. RPK-S works in temperature from -20 to 80°C and relative humidity up to 80%. Recommended air flow velocity is from 3 to 8 meters per second at pressure difference to  $\Delta p$  500 Pa. Accuracy is ±5 %(±10% for outer settings).

#### Mounting

Regulator can be mounted to horizontal, diagonal or vertical duct. The blade must be always horizontal. It is necessary to pay attention to correct direction of mounting, so that the air is entering the regulator according to the arrow direction, which is located on regulator casing. Connecting the duct and the regulator is with flanges. After mounting, set the required air volume by turning the working screw on the controller box.

![](_page_13_Figure_18.jpeg)

Nominal dimension a x b [mm]

| Size    | q<br>(m³.h⁻¹) | a<br>(mm) | b<br>(mm) | m<br>(kg) | m(i)<br>(kg) |
|---------|---------------|-----------|-----------|-----------|--------------|
| 200x100 | 330-580       | 200       | 100       | 2,9       | 5,3          |
| 200x200 | 510-1200      | 200       | 200       | 3,7       | 6,6          |
| 300x100 | 470-850       |           | 100       | 3,7       | 6,6          |
| 300x150 | 600-1350      | 300       | 150       | 4,1       | 7,2          |
| 300x200 | 800-1670      |           | 200       | 4,6       | 8,0          |
| 400x200 | 1100-2400     |           | 200       | 5,4       | 9,3          |
| 400x250 | 1750-3400     |           | 250       | 6,1       | 10,1         |
| 400x300 | 1700-3600     | 400       | 300       | 6,5       | 10,8         |
| 400x400 | 2000-5400     |           | 400       | 9,0       | 13,7         |
| 500x200 | 1500-3200     |           | 200       | 6,2       | 10,5         |
| 500x250 | 2300-4500     |           | 250       | 6,7       | 11,0         |
| 500x300 | 2400-4300     | 500       | 300       | 7,0       | 11,7         |
| 500x400 | 2400-5500     |           | 400       | 10,1      | 15,1         |
| 500x500 | 3800-6500     |           | 500       | 13,0      | 18,6         |
| 600x200 | 1500-3500     |           | 200       | 7,0       | 12,3         |
| 600x250 | 2550-5100     |           | 250       | 7,4       | 12,8         |
| 600x300 | 2700-5000     | (00       | 300       | 10,2      | 15,3         |
| 600x400 | 2900-5500     | 600       | 400       | 11,4      | 17,0         |
| 600x500 | 3000-9000     |           | 500       | 14,6      | 20,7         |
| 600x600 | 4250-8600     |           | 600       | 15,8      | 22,6         |

![](_page_13_Picture_21.jpeg)

![](_page_14_Figure_1.jpeg)

Way of mounting RPK-S

![](_page_14_Figure_3.jpeg)

Main dimension of RPK-S

![](_page_14_Figure_5.jpeg)

Main dimension of RPK-S-I

![](_page_14_Picture_7.jpeg)

![](_page_15_Picture_1.jpeg)

# Optima R

Single skin circular variable air volume unit

#### Highlights:

- Blade tightness class 4 according to EN 1751
- Casing tightness class C according to EN 1751
- ILH Hygienic certification VDI 6022 & VDI 3803
- Measuring accuracy of 5 %
- Air volume range of 36 to 13500 m3/h
- Operating pressure of up to 1000 Pa

#### Function

Systemair circular VAV terminal units are available in two versions:

Single skin Optima R. Single skin circular VAV terminal units are commonly used for return air applications or for supply applications at low system pressures.Terminal units are ideal for single zone control with supply and return in Master and Slave setup such as offices, hotel rooms or meeting rooms where the required cooling and heating load will vary on demand.

#### Design

VAV unit housing constructed of galvanized steel sheet, large surface pleated for extra stiffness. In Optima R-I the external acoustic insulation of fiber glass material is designed to absorb the radiated sound power level generated by the damper assembly. The insulation is once again is covered by a secondary galvanized sheet steel to protect the insulation and to add to the low frequency sound radiated in high pressure systems.

Special design of centre averaging multipoint airflow differential cross velocity pressure sensor assures an accurate air flow readings even in difficult installations. Button punch snap lock seams, lock form with airtight nylon bearings to assure low casing leakage.

#### **Available Sizes**

Inlet/outlet : from Ø100 to Ø630 mm

#### Controls

The VAV terminal units are as standard equipped with Belimo compact controller without any MP or other communication capability to be used as stand alone or in Master and Slave setting. The compact controllers which are supplied with MP-Bus communication capability,

![](_page_15_Figure_21.jpeg)

| Size | ØD (mm) | L (mm) |
|------|---------|--------|
| 100  | 97      | 400    |
| 125  | 122     |        |
| 140  | 137     | (00    |
| 160  | 157     | 600    |
| 180  | 177     |        |
| 200  | 197     |        |
| 225  | 222     |        |
| 250  | 247     | 800    |
| 280  | 277     |        |
| 315  | 312     |        |
| 355  | 352     |        |
| 400  | 397     | 1000   |
| 500  | 497     | 1000   |
| 630  | 627     |        |

 $^{\ast}$  All dimensions given in mm in accordance to EN 1506 ØD are the Inlet-Outlet dimensions

can be connected later in time to building managment systems to create a zone controle by creating bus-rings solutions.

The compact controllers are equally available with MP-Bus, LON and ModBus communication capability on demand.

The compact controllers which are supplied only with MP-Bus communication can be connected later in time with other Bus- Interfaces. Compact controllers are factory calibrated prior to dispatch.

![](_page_15_Picture_27.jpeg)

## Optima-R-Single skin terminal units Discharge sound levels

|            |     |                             |    | _   | Lw  | (dB) at | ΔP <sub>t</sub> =200 | Pa   | -    | _    | L <sub>p</sub> A |    |     | Ľ   | (dB) at a | ΔP <sub>t</sub> =400 | Pa   |      |      | L <sub>p</sub> A |
|------------|-----|-----------------------------|----|-----|-----|---------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500     | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 40 | 45  | 45  | 45      | 43                   | 41   | 37   | 31   | 38               | 45 | 49  | 49  | 49        | 47                   | 45   | 41   | 35   | 42               |
| 125        | 72  | 26                          | 48 | 52  | 52  | 52      | 50                   | 48   | 44   | 38   | 45               | 52 | 57  | 56  | 56        | 55                   | 52   | 49   | 43   | 49               |
| 12.5       | 109 | 58                          | 52 | 57  | 56  | 56      | 55                   | 52   | 49   | 43   | 49               | 56 | 61  | 61  | 60        | 59                   | 57   | 53   | 47   | 54               |
|            | 144 | 103                         | 55 | 60  | 59  | 59      | 58                   | 55   | 52   | 46   | 52               | 59 | 64  | 64  | 63        | 62                   | 60   | 56   | 50   | 57               |
|            | 60  | 6                           | 42 | 47  | 47  | 46      | 45                   | 42   | 39   | 33   | 40               | 47 | 51  | 51  | 51        | 49                   | 47   | 43   | 37   | 44               |
| 160        | 119 | 22                          | 49 | 54  | 52  | 53      | 52                   | 49   | 46   | 40   | 47               | 54 | 58  | 58  | 58        | 56                   | 54   | 50   | 44   | 51               |
| 100        | 179 | 50                          | 53 | 58  | 57  | 57      | 56                   | 53   | 50   | 44   | 51               | 58 | 62  | 62  | 62        | 60                   | 58   | 54   | 48   | 55               |
|            | 239 | 89                          | 56 | 61  | 60  | 60      | 59                   | 56   | 53   | 47   | 53               | 60 | 65  | 65  | 65        | 63                   | 61   | 57   | 51   | 58               |
|            | 94  | 5                           | 43 | 48  | 48  | 47      | 46                   | 44   | 40   | 34   | 41               | 48 | 53  | 53  | 52        | 51                   | 48   | 45   | 39   | 46               |
| 200        | 189 | 19                          | 50 | 55  | 54  | 54      | 52                   | 50   | 47   | 41   | 47               | 55 | 59  | 59  | 59        | 57                   | 55   | 51   | 45   | 52               |
| 200        | 283 | 43                          | 54 | 58  | 58  | 58      | 56                   | 54   | 50   | 44   | 51               | 58 | 63  | 63  | 63        | 61                   | 59   | 55   | 49   | 56               |
|            | 378 | 77                          | 56 | 61  | 61  | 61      | 59                   | 57   | 53   | 47   | 54               | 61 | 66  | 66  | 65        | 64                   | 62   | 58   | 52   | 59               |
|            | 146 | 4                           | 44 | 48  | 48  | 48      | 46                   | 44   | 40   | 34   | 41               | 49 | 54  | 53  | 53        | 52                   | 49   | 46   | 40   | 46               |
| 250        | 292 | 15                          | 50 | 55  | 54  | 54      | 53                   | 50   | 47   | 41   | 48               | 55 | 60  | 60  | 59        | 58                   | 56   | 52   | 46   | 53               |
| 250        | 437 | 34                          | 54 | 58  | 58  | 58      | 56                   | 54   | 50   | 44   | 51               | 59 | 64  | 63  | 63        | 61                   | 59   | 56   | 50   | 56               |
|            | 583 | 61                          | 56 | 61  | 61  | 60      | 59                   | 57   | 53   | 47   | 54               | 61 | 66  | 66  | 66        | 64                   | 62   | 58   | 52   | 59               |
|            | 233 | 3                           | 44 | 49  | 48  | 48      | 47                   | 44   | 41   | 35   | 42               | 49 | 54  | 54  | 54        | 52                   | 50   | 46   | 40   | 47               |
| 215        | 467 | 12                          | 50 | 55  | 54  | 54      | 53                   | 50   | 47   | 41   | 48               | 55 | 60  | 60  | 60        | 58                   | 56   | 52   | 46   | 53               |
| 515        | 700 | 27                          | 53 | 58  | 58  | 58      | 56                   | 54   | 50   | 44   | 51               | 59 | 64  | 63  | 63        | 62                   | 59   | 56   | 50   | 57               |
|            | 933 | 47                          | 56 | 61  | 60  | 60      | 59                   | 56   | 53   | 47   | 53               | 61 | 66  | 66  | 66        | 64                   | 62   | 58   | 52   | 59               |

|            |     |                             |    |     | Lw  | (dB) at a | ∆P <sub>t</sub> =600 | Pa   |      |      | L <sub>P</sub> A |    |     | L   | (dB) at A | P <sub>t</sub> =800 | Ра   |      |      | L <sub>p</sub> A |
|------------|-----|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|-----------|---------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ∆P <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 47 | 52  | 52  | 51        | 50                   | 48   | 44   | 38   | 45               | 49 | 54  | 53  | 53        | 52                  | 49   | 46   | 40   | 47               |
| 125        | 72  | 26                          | 54 | 59  | 59  | 59        | 57                   | 55   | 51   | 45   | 52               | 56 | 61  | 61  | 60        | 59                  | 57   | 53   | 47   | 54               |
| 125        | 109 | 58                          | 59 | 63  | 63  | 63        | 61                   | 59   | 55   | 49   | 56               | 60 | 65  | 65  | 65        | 63                  | 61   | 57   | 51   | 58               |
|            | 144 | 103                         | 62 | 66  | 66  | 66        | 64                   | 62   | 58   | 52   | 59               | 63 | 68  | 68  | 68        | 66                  | 64   | 60   | 54   | 61               |
|            | 60  | 6                           | 49 | 54  | 54  | 54        | 52                   | 50   | 46   | 40   | 47               | 51 | 56  | 56  | 55        | 54                  | 52   | 48   | 42   | 49               |
| 160        | 119 | 22                          | 56 | 61  | 61  | 60        | 59                   | 57   | 53   | 47   | 54               | 58 | 63  | 63  | 62        | 61                  | 59   | 55   | 49   | 56               |
| 100        | 179 | 50                          | 60 | 65  | 65  | 64        | 63                   | 61   | 57   | 51   | 58               | 62 | 67  | 67  | 66        | 65                  | 63   | 59   | 53   | 60               |
|            | 239 | 89                          | 63 | 68  | 68  | 67        | 66                   | 63   | 60   | 54   | 61               | 65 | 70  | 69  | 69        | 68                  | 65   | 62   | 56   | 63               |
|            | 94  | 5                           | 51 | 56  | 55  | 55        | 54                   | 51   | 48   | 42   | 48               | 53 | 58  | 57  | 57        | 56                  | 53   | 50   | 44   | 51               |
| 200        | 189 | 19                          | 57 | 62  | 62  | 62        | 60                   | 58   | 54   | 48   | 55               | 60 | 64  | 64  | 64        | 62                  | 60   | 56   | 50   | 57               |
| 200        | 283 | 43                          | 61 | 66  | 66  | 66        | 64                   | 62   | 58   | 52   | 59               | 63 | 68  | 68  | 68        | 66                  | 64   | 60   | 54   | 61               |
|            | 378 | 77                          | 64 | 69  | 69  | 68        | 67                   | 64   | 61   | 55   | 62               | 66 | 71  | 71  | 70        | 69                  | 67   | 63   | 57   | 64               |
|            | 146 | 4                           | 52 | 57  | 56  | 56        | 55                   | 52   | 49   | 43   | 49               | 54 | 59  | 58  | 58        | 57                  | 54   | 51   | 45   | 52               |
| 250        | 292 | 15                          | 58 | 63  | 63  | 62        | 61                   | 59   | 55   | 49   | 56               | 60 | 65  | 65  | 64        | 63                  | 61   | 57   | 51   | 58               |
| 250        | 437 | 34                          | 62 | 67  | 66  | 66        | 65                   | 62   | 59   | 53   | 59               | 64 | 69  | 68  | 68        | 67                  | 64   | 61   | 55   | 62               |
|            | 583 | 61                          | 64 | 69  | 69  | 69        | 67                   | 65   | 61   | 55   | 62               | 67 | 71  | 71  | 71        | 69                  | 67   | 63   | 57   | 64               |
|            | 233 | 3                           | 53 | 57  | 57  | 57        | 55                   | 53   | 49   | 43   | 50               | 55 | 60  | 59  | 59        | 58                  | 55   | 52   | 46   | 53               |
| 215        | 467 | 12                          | 59 | 63  | 63  | 63        | 61                   | 59   | 55   | 49   | 56               | 61 | 66  | 65  | 65        | 64                  | 61   | 58   | 52   | 59               |
| 515        | 700 | 27                          | 62 | 67  | 67  | 67        | 65                   | 63   | 59   | 53   | 60               | 64 | 69  | 69  | 69        | 67                  | 65   | 61   | 55   | 62               |
|            | 933 | 47                          | 65 | 69  | 69  | 69        | 67                   | 65   | 61   | 55   | 62               | 67 | 72  | 71  | 71        | 70                  | 67   | 64   | 58   | 65               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741  $\,$ 

![](_page_16_Picture_5.jpeg)

## Optima-R-Single skin terminal units Radiated sound levels

|            |     |                             |    |     | Ľ   | (dB) at a | ΔP <sub>t</sub> =200 | Ра   |      |      | L <sub>P</sub> A |    |     | Ľ   | (dB) at | ΔP <sub>t</sub> =400 | Pa   |      | -    | L <sub>P</sub> A |
|------------|-----|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|---------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500     | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 28 | 32  | 31  | 29        | 28                   | 25   | 24   | <15  | 23               | 35 | 38  | 37  | 35      | 34                   | 32   | 30   | 23   | 29               |
| 125        | 72  | 26                          | 32 | 36  | 35  | 33        | 32                   | 29   | 28   | 21   | 27               | 38 | 42  | 41  | 39      | 38                   | 35   | 34   | 27   | 33               |
| 125        | 109 | 58                          | 35 | 38  | 37  | 35        | 34                   | 32   | 30   | 23   | 29               | 41 | 44  | 43  | 41      | 41                   | 38   | 36   | 29   | 36               |
|            | 144 | 103                         | 36 | 40  | 39  | 37        | 36                   | 33   | 32   | 25   | 31               | 42 | 46  | 45  | 43      | 42                   | 39   | 38   | 31   | 37               |
|            | 60  | 6                           | 27 | 31  | 30  | 28        | 27                   | 24   | 23   | <15  | 22               | 34 | 37  | 36  | 34      | 34                   | 31   | 29   | 22   | 28               |
| 160        | 119 | 22                          | 32 | 35  | 34  | 32        | 32                   | 29   | 27   | 20   | 27               | 38 | 42  | 40  | 39      | 38                   | 35   | 33   | 26   | 33               |
| 100        | 179 | 50                          | 35 | 38  | 37  | 35        | 34                   | 32   | 30   | 23   | 29               | 41 | 44  | 43  | 41      | 41                   | 38   | 36   | 29   | 35               |
|            | 239 | 89                          | 36 | 40  | 39  | 37        | 36                   | 33   | 32   | 25   | 31               | 43 | 46  | 45  | 43      | 43                   | 40   | 38   | 31   | 37               |
|            | 94  | 5                           | 27 | 31  | 30  | 28        | 27                   | 24   | 23   | <15  | 22               | 34 | 37  | 36  | 34      | 33                   | 31   | 29   | 22   | 28               |
| 200        | 189 | 19                          | 32 | 36  | 35  | 33        | 32                   | 29   | 28   | 21   | 27               | 38 | 42  | 41  | 39      | 38                   | 35   | 34   | 27   | 33               |
| 200        | 283 | 43                          | 35 | 39  | 37  | 36        | 35                   | 32   | 30   | 23   | 30               | 41 | 45  | 44  | 42      | 41                   | 38   | 37   | 30   | 36               |
|            | 378 | 77                          | 37 | 41  | 39  | 38        | 37                   | 34   | 32   | 25   | 32               | 43 | 47  | 46  | 44      | 43                   | 40   | 39   | 32   | 38               |
|            | 146 | 4                           | 28 | 31  | 30  | 28        | 27                   | 25   | 23   | <15  | 22               | 34 | 37  | 36  | 34      | 34                   | 31   | 29   | 22   | 29               |
| 250        | 292 | 15                          | 33 | 37  | 35  | 33        | 33                   | 30   | 28   | 21   | 28               | 39 | 43  | 41  | 40      | 39                   | 36   | 34   | 27   | 34               |
| 250        | 437 | 34                          | 36 | 40  | 38  | 37        | 36                   | 33   | 31   | 24   | 31               | 42 | 46  | 45  | 43      | 42                   | 39   | 38   | 31   | 37               |
|            | 583 | 61                          | 38 | 42  | 41  | 39        | 38                   | 35   | 34   | 27   | 33               | 45 | 48  | 47  | 45      | 44                   | 42   | 40   | 33   | 39               |
|            | 233 | 3                           | 29 | 32  | 31  | 29        | 28                   | 26   | 24   | <15  | 23               | 35 | 38  | 37  | 35      | 35                   | 32   | 30   | 23   | 30               |
| 315        | 467 | 12                          | 34 | 38  | 37  | 35        | 34                   | 31   | 30   | 23   | 29               | 41 | 44  | 43  | 41      | 41                   | 38   | 36   | 29   | 35               |
| 515        | 700 | 27                          | 38 | 41  | 40  | 38        | 38                   | 35   | 33   | 26   | 32               | 44 | 48  | 46  | 45      | 44                   | 41   | 39   | 32   | 39               |
|            | 933 | 47                          | 40 | 44  | 42  | 41        | 40                   | 37   | 35   | 28   | 35               | 46 | 50  | 49  | 47      | 46                   | 43   | 42   | 35   | 41               |

|            |     |                             |    |     | Lw  | (dB) at a | ∆P <sub>t</sub> =600 | Ра   |      |      | L <sub>P</sub> A |    |     | Lw  | (dB) at A | ∆P <sub>t</sub> =800 | Pa   |      |      | L <sub>P</sub> A |
|------------|-----|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 38 | 42  | 40  | 39        | 38                   | 35   | 33   | 26   | 33               | 41 | 44  | 43  | 41        | 41                   | 38   | 36   | 29   | 35               |
| 125        | 72  | 26                          | 42 | 46  | 44  | 43        | 42                   | 39   | 37   | 30   | 37               | 45 | 48  | 47  | 45        | 45                   | 42   | 40   | 33   | 39               |
| 125        | 109 | 58                          | 44 | 48  | 47  | 45        | 44                   | 41   | 40   | 33   | 39               | 47 | 51  | 49  | 48        | 47                   | 44   | 42   | 35   | 42               |
|            | 144 | 103                         | 46 | 50  | 48  | 47        | 46                   | 43   | 41   | 34   | 41               | 49 | 52  | 51  | 49        | 49                   | 46   | 44   | 37   | 43               |
|            | 60  | 6                           | 37 | 41  | 40  | 38        | 37                   | 34   | 33   | 26   | 32               | 40 | 44  | 42  | 40        | 40                   | 37   | 35   | 28   | 35               |
| 160        | 119 | 22                          | 42 | 45  | 44  | 42        | 42                   | 39   | 37   | 30   | 37               | 44 | 48  | 47  | 45        | 44                   | 41   | 40   | 33   | 39               |
| 160        | 179 | 50                          | 44 | 48  | 47  | 45        | 44                   | 41   | 40   | 33   | 39               | 47 | 51  | 49  | 48        | 47                   | 44   | 42   | 35   | 42               |
|            | 239 | 89                          | 46 | 50  | 49  | 47        | 46                   | 43   | 42   | 35   | 41               | 49 | 52  | 51  | 49        | 49                   | 46   | 44   | 37   | 44               |
|            | 94  | 5                           | 37 | 41  | 40  | 38        | 37                   | 34   | 33   | 26   | 32               | 40 | 43  | 42  | 40        | 40                   | 37   | 35   | 28   | 35               |
| 200        | 189 | 19                          | 42 | 46  | 44  | 43        | 42                   | 39   | 37   | 30   | 37               | 45 | 48  | 47  | 45        | 45                   | 42   | 40   | 33   | 39               |
| 200        | 283 | 43                          | 45 | 49  | 47  | 45        | 45                   | 42   | 40   | 33   | 40               | 48 | 51  | 50  | 48        | 47                   | 45   | 43   | 36   | 42               |
|            | 378 | 77                          | 47 | 51  | 49  | 48        | 47                   | 44   | 42   | 35   | 42               | 50 | 53  | 52  | 50        | 50                   | 47   | 45   | 38   | 44               |
|            | 146 | 4                           | 37 | 41  | 40  | 38        | 37                   | 34   | 33   | 26   | 32               | 40 | 44  | 42  | 41        | 40                   | 37   | 35   | 28   | 35               |
| 250        | 292 | 15                          | 43 | 46  | 45  | 43        | 43                   | 40   | 38   | 31   | 38               | 45 | 49  | 48  | 46        | 45                   | 42   | 41   | 34   | 40               |
| 250        | 437 | 34                          | 46 | 50  | 48  | 46        | 46                   | 43   | 41   | 34   | 41               | 49 | 52  | 51  | 49        | 48                   | 46   | 44   | 37   | 43               |
|            | 583 | 61                          | 48 | 52  | 50  | 49        | 48                   | 45   | 43   | 36   | 43               | 51 | 54  | 53  | 51        | 51                   | 48   | 46   | 39   | 45               |
|            | 233 | 3                           | 39 | 42  | 41  | 39        | 38                   | 36   | 34   | 27   | 33               | 41 | 45  | 43  | 42        | 41                   | 38   | 36   | 29   | 36               |
| 215        | 467 | 12                          | 44 | 48  | 47  | 45        | 44                   | 41   | 40   | 33   | 39               | 47 | 51  | 49  | 47        | 47                   | 44   | 42   | 35   | 42               |
| 515        | 700 | 27                          | 48 | 51  | 50  | 48        | 48                   | 45   | 43   | 36   | 42               | 50 | 54  | 53  | 51        | 50                   | 47   | 46   | 39   | 45               |
|            | 933 | 47                          | 50 | 54  | 52  | 51        | 50                   | 47   | 45   | 38   | 45               | 53 | 56  | 55  | 53        | 53                   | 50   | 48   | 41   | 47               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741

![](_page_17_Picture_5.jpeg)

# **Optima-RI** Double skin circular variable air volume unit

![](_page_18_Picture_2.jpeg)

#### Highlights:

- Blade tightness class 4 according to EN 1751
- Casing tightness class C according to EN 1751
- ILH Hygienic certification VDI 6022 & VDI 3803
- Measuring accuracy of 5 %
- Air volume range of 36 to 13500 m3/h
- Operating pressure of up to 1000 Pa

#### Function

Systemair circular VAV terminal units are available in two versions:

Double skin Optima R-I Double skin circular VAV terminal units are commonly used for supply or for return air applications at medium to high system pressures. Terminal units are ideal for single zone control with supply and return in Master and Slave setup such as offices, hotel rooms or meeting rooms where the required cooling and heating load will vary on demand.

#### Design

VAV unit housing constructed of galvanized steel sheet, large surface pleated for extra stiffness. In Optima R-I the external acoustic insulation of fiber glass material is designed to absorb the radiated sound power level generated by the damper assembly. The insulation is once again is covered by a secondary galvanized sheet steel to protect the insulation and to add to the low frequency sound radiated in high pressure systems.

Special design of centre averaging multipoint airflow differential cross velocity pressure sensor assures an accurate air flow readings even in difficult installations. Button punch snap lock seams, lock form with airtight nylon bearings to assure low casing leakage.

#### **Available Sizes**

Inlet/outlet : from Ø100 to Ø630 mm

#### Controls

The VAV terminal units are as standard equipped with Belimo compact controller without any MP or other communication capability to be used as stand alone or in Master and Slave setting. The compact controllers which are supplied with MP-Bus communication capability, can be connected later in time to building managment systems to create a zone controle by creating bus-rings solutions.

The compact controllers are equally available with MP-Bus, LON and ModBus communication capability on demand.

The compact controllers which are supplied only with MP-Bus communication can be connected later in time with other Bus- Interfaces. Compact controllers are factory calibrated prior to dispatch.

![](_page_18_Figure_23.jpeg)

| Size | ØD (mm) | L (mm) |
|------|---------|--------|
| 100  | 97      | 400    |
| 125  | 122     |        |
| 140  | 137     | (00    |
| 160  | 157     | 600    |
| 180  | 177     |        |
| 200  | 197     |        |
| 225  | 222     |        |
| 250  | 247     | 800    |
| 280  | 277     |        |
| 315  | 312     |        |
| 355  | 352     |        |
| 400  | 397     | 1000   |
| 500  | 497     | 1000   |
| 630  | 627     |        |

\* All dimensions given in mm in accordance to EN 1506 ØD are the Inlet-Outlet dimensions

![](_page_18_Picture_26.jpeg)

## Optima-RI-Double skin terminal units Discharge sound levels

|            |     |                |    |     | Lw  | (dB) at | ΔP <sub>t</sub> =200 | Ра   |      |      | L <sub>P</sub> A |    |     | Ľ   | (dB) at a | ΔΡ <sub>t</sub> =400 | Ра   |      |      | L <sub>P</sub> A |
|------------|-----|----------------|----|-----|-----|---------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ∆P,min<br>(Pa) | 63 | 125 | 250 | 500     | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6              | 37 | 42  | 42  | 40      | 36                   | 34   | 34   | 28   | 33               | 44 | 49  | 49  | 47        | 42                   | 41   | 40   | 34   | 39               |
| 125        | 72  | 26             | 43 | 48  | 48  | 46      | 42                   | 40   | 40   | 34   | 39               | 50 | 55  | 55  | 53        | 48                   | 47   | 46   | 40   | 45               |
| 125        | 109 | 58             | 47 | 52  | 52  | 50      | 45                   | 44   | 43   | 37   | 42               | 53 | 59  | 58  | 56        | 52                   | 51   | 50   | 44   | 49               |
|            | 144 | 103            | 49 | 54  | 54  | 52      | 48                   | 46   | 46   | 40   | 45               | 56 | 61  | 61  | 59        | 54                   | 53   | 52   | 46   | 51               |
|            | 60  | 6              | 40 | 46  | 45  | 43      | 39                   | 38   | 37   | 31   | 36               | 47 | 52  | 52  | 50        | 45                   | 44   | 43   | 37   | 42               |
| 160        | 119 | 22             | 46 | 51  | 51  | 49      | 45                   | 43   | 43   | 36   | 42               | 53 | 58  | 58  | 56        | 51                   | 50   | 49   | 43   | 48               |
| 100        | 179 | 50             | 49 | 55  | 54  | 53      | 48                   | 47   | 46   | 40   | 45               | 56 | 61  | 61  | 59        | 55                   | 53   | 53   | 46   | 52               |
|            | 239 | 89             | 52 | 57  | 57  | 55      | 50                   | 49   | 48   | 42   | 47               | 58 | 64  | 63  | 62        | 57                   | 56   | 55   | 49   | 54               |
|            | 94  | 5              | 43 | 48  | 48  | 46      | 41                   | 40   | 39   | 33   | 38               | 49 | 55  | 54  | 53        | 48                   | 47   | 46   | 40   | 45               |
| 200        | 189 | 19             | 48 | 53  | 53  | 51      | 47                   | 45   | 45   | 39   | 44               | 55 | 60  | 60  | 58        | 53                   | 52   | 51   | 45   | 50               |
| 200        | 283 | 43             | 51 | 57  | 56  | 55      | 50                   | 49   | 48   | 42   | 47               | 58 | 63  | 63  | 61        | 57                   | 55   | 55   | 48   | 54               |
|            | 378 | 77             | 54 | 59  | 59  | 57      | 52                   | 51   | 50   | 44   | 49               | 60 | 66  | 65  | 63        | 59                   | 58   | 57   | 51   | 56               |
|            | 146 | 4              | 45 | 50  | 50  | 48      | 43                   | 42   | 41   | 35   | 40               | 51 | 57  | 56  | 54        | 50                   | 49   | 48   | 42   | 47               |
| 250        | 292 | 15             | 50 | 55  | 55  | 53      | 48                   | 47   | 46   | 40   | 45               | 56 | 62  | 61  | 60        | 55                   | 54   | 53   | 47   | 52               |
| 250        | 437 | 34             | 53 | 58  | 58  | 56      | 51                   | 50   | 49   | 43   | 48               | 59 | 65  | 64  | 63        | 58                   | 57   | 56   | 50   | 55               |
|            | 583 | 61             | 55 | 60  | 60  | 58      | 53                   | 52   | 51   | 45   | 50               | 62 | 67  | 67  | 65        | 60                   | 59   | 58   | 52   | 57               |
|            | 233 | 3              | 46 | 52  | 51  | 50      | 45                   | 44   | 43   | 37   | 42               | 53 | 58  | 58  | 56        | 52                   | 50   | 50   | 44   | 49               |
| 315        | 467 | 12             | 51 | 56  | 56  | 54      | 50                   | 48   | 48   | 42   | 47               | 58 | 63  | 63  | 61        | 56                   | 55   | 54   | 48   | 53               |
| 610        | 700 | 27             | 54 | 59  | 59  | 57      | 53                   | 51   | 51   | 44   | 50               | 61 | 66  | 66  | 64        | 59                   | 58   | 57   | 51   | 56               |
|            | 933 | 47             | 56 | 61  | 61  | 59      | 55                   | 53   | 53   | 56   | 52               | 63 | 68  | 68  | 66        | 61                   | 60   | 59   | 53   | 58               |

|            |     |                |    |     | Lw  | (dB) at a | ΔP <sub>t</sub> =600 | Ра   |      |      | L <sub>P</sub> A |    |     | Ľ   | (dB) at a | ∆P <sub>t</sub> =800 | Ра   |      |      | L <sub>p</sub> A |
|------------|-----|----------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ∆P,min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6              | 48 | 53  | 53  | 51        | 46                   | 45   | 44   | 38   | 43               | 50 | 55  | 55  | 53        | 49                   | 47   | 47   | 41   | 46               |
| 125        | 72  | 26             | 54 | 59  | 59  | 57        | 52                   | 51   | 50   | 34   | 49               | 56 | 62  | 61  | 59        | 55                   | 54   | 53   | 47   | 52               |
| 125        | 109 | 58             | 57 | 62  | 62  | 60        | 56                   | 54   | 54   | 48   | 53               | 60 | 65  | 65  | 63        | 58                   | 57   | 56   | 50   | 55               |
|            | 144 | 103            | 60 | 65  | 65  | 63        | 58                   | 57   | 56   | 50   | 55               | 62 | 68  | 67  | 66        | 61                   | 60   | 59   | 53   | 58               |
|            | 60  | 6              | 51 | 56  | 56  | 54        | 49                   | 48   | 47   | 41   | 48               | 54 | 59  | 59  | 57        | 52                   | 51   | 50   | 44   | 49               |
| 160        | 119 | 22             | 57 | 62  | 62  | 60        | 55                   | 54   | 53   | 47   | 52               | 59 | 64  | 64  | 62        | 58                   | 56   | 56   | 50   | 55               |
| 100        | 179 | 50             | 60 | 65  | 65  | 63        | 58                   | 57   | 56   | 50   | 55               | 63 | 68  | 68  | 66        | 61                   | 60   | 59   | 53   | 58               |
|            | 239 | 89             | 62 | 67  | 67  | 65        | 61                   | 59   | 59   | 53   | 58               | 65 | 70  | 70  | 68        | 64                   | 62   | 62   | 55   | 61               |
|            | 94  | 5              | 53 | 59  | 58  | 56        | 52                   | 51   | 50   | 44   | 49               | 56 | 61  | 61  | 59        | 55                   | 53   | 53   | 46   | 52               |
| 200        | 189 | 19             | 59 | 64  | 64  | 62        | 57                   | 56   | 55   | 49   | 54               | 61 | 67  | 66  | 65        | 60                   | 59   | 58   | 52   | 57               |
| 200        | 283 | 43             | 62 | 67  | 67  | 65        | 60                   | 59   | 58   | 52   | 57               | 65 | 70  | 70  | 68        | 63                   | 62   | 61   | 55   | 60               |
|            | 378 | 77             | 64 | 69  | 69  | 67        | 63                   | 61   | 61   | 55   | 60               | 67 | 72  | 72  | 70        | 65                   | 64   | 63   | 57   | 62               |
|            | 146 | 4              | 55 | 60  | 60  | 58        | 54                   | 52   | 52   | 46   | 51               | 58 | 63  | 63  | 61        | 57                   | 55   | 55   | 48   | 54               |
| 250        | 292 | 15             | 60 | 66  | 65  | 63        | 59                   | 58   | 57   | 51   | 56               | 63 | 68  | 68  | 66        | 62                   | 60   | 60   | 54   | 59               |
| 250        | 437 | 34             | 63 | 69  | 68  | 66        | 62                   | 61   | 60   | 54   | 59               | 66 | 71  | 71  | 69        | 65                   | 63   | 63   | 57   | 62               |
|            | 583 | 61             | 65 | 71  | 70  | 69        | 64                   | 63   | 52   | 56   | 61               | 68 | 73  | 73  | 71        | 67                   | 65   | 65   | 59   | 64               |
|            | 233 | 3              | 57 | 62  | 62  | 60        | 56                   | 54   | 54   | 47   | 53               | 60 | 65  | 65  | 63        | 58                   | 57   | 56   | 50   | 55               |
| 215        | 467 | 12             | 62 | 67  | 67  | 65        | 60                   | 59   | 58   | 52   | 57               | 65 | 70  | 70  | 68        | 63                   | 62   | 61   | 55   | 60               |
| 515        | 700 | 27             | 65 | 70  | 70  | 68        | 63                   | 62   | 61   | 55   | 60               | 67 | 73  | 72  | 70        | 66                   | 65   | 64   | 58   | 63               |
|            | 933 | 47             | 67 | 72  | 72  | 70        | 65                   | 64   | 63   | 57   | 62               | 69 | 75  | 74  | 72        | 68                   | 67   | 66   | 60   | 65               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741  $\,$ 

![](_page_19_Picture_5.jpeg)

### Optima-RI-Double skin terminal units Radiated sound levels

|            |     |                             |    | -   | L,  | (dB) at a | ΔP <sub>t</sub> =200 | Pa   | _    | -    | L <sub>P</sub> A |    | _   | L   | (dB) at | ΔP <sub>t</sub> =400 | Pa   |      |      | L <sub>P</sub> A |
|------------|-----|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|---------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500     | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 23 | 26  | 27  | 26        | 20                   | <15  | <15  | <15  | <15              | 30 | 33  | 34  | 32      | 26                   | 23   | 21   | <15  | 23               |
| 125        | 72  | 26                          | 27 | 30  | 31  | 29        | 24                   | 21   | <15  | <15  | 21               | 34 | 37  | 38  | 36      | 30                   | 27   | 25   | <15  | 27               |
| 125        | 109 | 58                          | 30 | 33  | 34  | 32        | 26                   | 23   | 21   | <15  | 23               | 36 | 39  | 40  | 38      | 33                   | 30   | 28   | <15  | 29               |
|            | 144 | 103                         | 31 | 34  | 35  | 33        | 28                   | 25   | 23   | <15  | 25               | 38 | 41  | 42  | 40      | 34                   | 31   | 29   | <15  | 31               |
|            | 60  | 6                           | 24 | 27  | 28  | 26        | 21                   | <15  | <15  | <15  | <15              | 30 | 33  | 34  | 33      | 27                   | 24   | 22   | <15  | 24               |
| 160        | 119 | 22                          | 29 | 32  | 33  | 31        | 25                   | 22   | 20   | <15  | 22               | 35 | 38  | 39  | 37      | 31                   | 28   | 26   | <15  | 28               |
| 100        | 179 | 50                          | 31 | 34  | 35  | 33        | 28                   | 25   | 23   | <15  | 25               | 37 | 41  | 42  | 40      | 34                   | 31   | 29   | <15  | 31               |
|            | 239 | 89                          | 33 | 36  | 37  | 35        | 30                   | 27   | 25   | <15  | 26               | 39 | 42  | 43  | 41      | 36                   | 33   | 31   | 20   | 33               |
|            | 94  | 5                           | 25 | 28  | 29  | 28        | 22                   | <15  | <15  | <15  | <15              | 32 | 35  | 36  | 34      | 28                   | 25   | 23   | <15  | 25               |
| 200        | 189 | 19                          | 30 | 33  | 34  | 32        | 27                   | 24   | 22   | <15  | 24               | 37 | 40  | 41  | 39      | 33                   | 30   | 28   | <15  | 30               |
| 200        | 283 | 43                          | 33 | 36  | 37  | 35        | 30                   | 27   | 25   | <15  | 27               | 39 | 43  | 44  | 42      | 36                   | 33   | 31   | 20   | 33               |
|            | 378 | 77                          | 35 | 38  | 39  | 37        | 32                   | 29   | 27   | <15  | 29               | 41 | 45  | 46  | 44      | 38                   | 35   | 33   | 22   | 35               |
|            | 146 | 4                           | 27 | 30  | 31  | 29        | 24                   | 21   | <15  | <15  | 20               | 33 | 36  | 37  | 36      | 30                   | 27   | 25   | <15  | 27               |
| 250        | 292 | 15                          | 32 | 36  | 37  | 35        | 29                   | 26   | 24   | <15  | 26               | 39 | 42  | 43  | 41      | 35                   | 32   | 30   | 20   | 32               |
| 250        | 437 | 34                          | 36 | 39  | 40  | 38        | 32                   | 29   | 27   | <15  | 29               | 42 | 45  | 46  | 44      | 39                   | 36   | 34   | 23   | 35               |
|            | 583 | 61                          | 38 | 41  | 42  | 40        | 34                   | 31   | 29   | <15  | 31               | 44 | 47  | 48  | 46      | 41                   | 38   | 36   | 25   | 37               |
|            | 233 | 3                           | 30 | 33  | 34  | 32        | 26                   | 23   | 21   | <15  | 23               | 36 | 39  | 40  | 38      | 33                   | 30   | 28   | <15  | 29               |
| 215        | 467 | 12                          | 35 | 38  | 39  | 38        | 32                   | 29   | 27   | <15  | 29               | 42 | 45  | 46  | 44      | 38                   | 35   | 33   | 23   | 35               |
| 313        | 700 | 27                          | 39 | 42  | 43  | 41        | 35                   | 32   | 30   | 20   | 32               | 45 | 48  | 49  | 47      | 42                   | 39   | 37   | 26   | 38               |
|            | 933 | 47                          | 41 | 44  | 45  | 43        | 38                   | 35   | 33   | 22   | 35               | 47 | 51  | 52  | 50      | 44                   | 41   | 39   | 28   | 41               |

|            |     |                             |    |     | Lw  | (dB) at a | ∆P <sub>t</sub> =600 | Ра   |      |      | L <sub>p</sub> A |    |     | Ľ   | (dB) at a | ∆P <sub>t</sub> =800 | Pa   |      |      | L <sub>P</sub> A |
|------------|-----|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 36  | 6                           | 33 | 36  | 37  | 35        | 30                   | 27   | 25   | <15  | 27               | 36 | 39  | 40  | 38        | 33                   | 30   | 28   | <15  | 29               |
| 125        | 72  | 26                          | 37 | 40  | 41  | 39        | 34                   | 31   | 29   | <15  | 31               | 40 | 43  | 44  | 42        | 37                   | 34   | 32   | 21   | 33               |
| 125        | 109 | 58                          | 40 | 43  | 44  | 42        | 36                   | 33   | 31   | 21   | 33               | 42 | 45  | 46  | 44        | 39                   | 36   | 34   | 23   | 36               |
|            | 144 | 103                         | 41 | 44  | 45  | 43        | 38                   | 35   | 33   | 22   | 35               | 44 | 47  | 48  | 46        | 40                   | 37   | 35   | 25   | 37               |
|            | 60  | 6                           | 34 | 37  | 38  | 36        | 31                   | 28   | 26   | <15  | 27               | 37 | 40  | 41  | 39        | 33                   | 30   | 28   | <15  | 30               |
| 160        | 119 | 22                          | 38 | 42  | 43  | 41        | 35                   | 32   | 30   | <15  | 32               | 41 | 44  | 45  | 43        | 38                   | 35   | 33   | 22   | 34               |
| 100        | 179 | 50                          | 41 | 44  | 45  | 43        | 38                   | 35   | 33   | 22   | 34               | 44 | 47  | 48  | 46        | 40                   | 37   | 35   | 25   | 37               |
|            | 239 | 89                          | 43 | 48  | 47  | 45        | 40                   | 37   | 35   | 24   | 36               | 46 | 49  | 50  | 48        | 42                   | 39   | 37   | 27   | 39               |
|            | 94  | 5                           | 35 | 38  | 39  | 37        | 32                   | 29   | 27   | <15  | 29               | 38 | 41  | 42  | 40        | 35                   | 32   | 30   | <15  | 31               |
| 200        | 189 | 19                          | 40 | 43  | 44  | 42        | 37                   | 34   | 32   | 21   | 34               | 43 | 46  | 47  | 45        | 40                   | 37   | 35   | 24   | 36               |
| 200        | 283 | 43                          | 43 | 46  | 47  | 45        | 40                   | 37   | 35   | 24   | 36               | 46 | 49  | 50  | 48        | 42                   | 39   | 37   | 27   | 39               |
|            | 378 | 77                          | 45 | 48  | 49  | 47        | 42                   | 39   | 37   | 26   | 39               | 48 | 51  | 52  | 50        | 44                   | 41   | 39   | 29   | 41               |
|            | 146 | 4                           | 37 | 40  | 41  | 39        | 34                   | 31   | 29   | <15  | 30               | 40 | 43  | 44  | 42        | 36                   | 33   | 31   | 21   | 33               |
| 250        | 292 | 15                          | 42 | 45  | 46  | 45        | 39                   | 36   | 34   | 23   | 36               | 45 | 48  | 49  | 47        | 42                   | 39   | 37   | 26   | 38               |
| 250        | 437 | 34                          | 45 | 49  | 50  | 48        | 42                   | 39   | 37   | 26   | 39               | 48 | 51  | 52  | 50        | 45                   | 42   | 40   | 29   | 41               |
|            | 583 | 61                          | 48 | 51  | 52  | 50        | 44                   | 41   | 39   | 29   | 41               | 50 | 53  | 54  | 52        | 47                   | 44   | 42   | 31   | 44               |
|            | 233 | 3                           | 40 | 43  | 44  | 42        | 36                   | 33   | 31   | 21   | 33               | 42 | 45  | 46  | 44        | 39                   | 36   | 34   | 23   | 36               |
| 215        | 467 | 12                          | 45 | 48  | 49  | 48        | 42                   | 39   | 37   | 26   | 39               | 48 | 51  | 52  | 50        | 45                   | 42   | 40   | 29   | 41               |
| 315        | 700 | 27                          | 49 | 52  | 53  | 51        | 45                   | 42   | 40   | 30   | 42               | 51 | 54  | 55  | 53        | 48                   | 45   | 43   | 32   | 45               |
|            | 933 | 47                          | 51 | 54  | 55  | 53        | 48                   | 45   | 43   | 32   | 44               | 54 | 57  | 58  | 56        | 50                   | 47   | 45   | 35   | 47               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741  $\,$ 

![](_page_20_Picture_5.jpeg)

![](_page_21_Picture_1.jpeg)

## **Optima RS** Single skin variable air volume unit Round inlet and rectanglar oulet

#### Highlights:

- Blade tightness class 4 according to EN 1751
- Casing tightness class C according to EN 1751
- Measuring accuracy of 5 %
- Air volume range of 54 to 5400 m3/h
- Operating pressure of up to 1000 Pa
- 30 mm high density insulation with cleanable protection tissue cover

#### Function

Single skin round to square VAV terminal units is commonly used for supply air applications or for return air applications at low to medium system pressures. Optima-RS VAV terminal units are ideal for multizone control with supply and return in master and slave setup such as offices, hotel rooms or meeting rooms where the required cooling and heating load will vary on demand.

#### Design

VAV unit housing constructed of galvanized steel sheet, large surface pleated for extra stiffness. Internal thermal acoustic insulation of fibre glass material, dual density insulation cover tissue is used to protect the fiberglass insulation to protect the deterioration of the insulation for air speeds of 20-25m/s.

Acoustic insulation in the housing has aerodynamic flow for extra low sound level. Double skin low leakage elliptical damper with airtight neoprene gasket seal. Special design of centre averaging multi-point airflow differential cross velocity pressure sensor assures an accurate air flow readings even in difficult installations. Button punch snap lock seams, lock form with airtight nylon bearings to assure low casing leakage. Rectangular outlet with M8 riveted nuts, suited for connecting to duct flange. 12 mm aluminium shaft with nylon bearings

#### **Available Sizes**

Inlet/outlet : from Ø125 to Ø400 mm

#### Controls:

The VAV terminal units are as standard equipped with Belimo compact controller without any MP or other communication capability to be used as stand alone or in Master

![](_page_21_Picture_19.jpeg)

The compact controllers are equally available with MP-Bus, LON and ModBus communication capability on demand. The compact controllers which are supplied only with MP-Bus communication can be connected later in time with or per-zones with other Bus-Interfaces. Compact controllers are factory calibrated prior to dispatch.

![](_page_21_Figure_21.jpeg)

#### **Dimensions and Airflow**

| Size | ØD<br>(mm) | L<br>(mm) | L0<br>(mm) | L1<br>(mm) | W<br>(mm) | H<br>(mm) | W1<br>(mm) | H1<br>(mm) |
|------|------------|-----------|------------|------------|-----------|-----------|------------|------------|
| 125  | 122        | 450       | 150        | 300        | 200       | 200       | 260        | 260        |
| 140  | 137        | 450       | 150        | 300        | 200       | 200       | 260        | 260        |
| 160  | 157        | 600       | 200        | 400        | 250       | 200       | 310        | 260        |
| 180  | 177        | 600       | 200        | 400        | 250       | 200       | 310        | 260        |
| 200  | 197        | 700       | 200        | 500        | 400       | 200       | 460        | 260        |
| 250  | 247        | 750       | 250        | 500        | 500       | 250       | 560        | 310        |
| 315  | 312        | 950       | 250        | 700        | 600       | 350       | 660        | 410        |
| 400  | 397        | 950       | 250        | 700        | 700       | 400       | 760        | 460        |

 $^{\star}$  All dimensions given in mm in accordance to EN 1505 ØD are the Inlet dimensions

![](_page_21_Picture_25.jpeg)

## Optima-RS Discharge sound levels

|            |      |                             |    |     | Lw  | (dB) at a | ΔP <sub>t</sub> =200 | Ра   |      |      | L <sub>p</sub> A |    |     | Lw  | (dB) at A | ∆P <sub>t</sub> =400 | Ра   |      |      | L <sub>P</sub> A |
|------------|------|-----------------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|----|-----|-----|-----------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s  | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500       | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 35   | 0                           | 29 | 31  | 32  | 29        | 29                   | 27   | 21   | <15  | 23               | 35 | 36  | 37  | 35        | 34                   | 32   | 26   | <15  | 29               |
| 175        | 69   | 1                           | 37 | 38  | 39  | 37        | 36                   | 34   | 28   | 21   | 31               | 42 | 43  | 45  | 42        | 42                   | 39   | 33   | 27   | 36               |
| 125        | 104  | 2                           | 41 | 42  | 43  | 41        | 40                   | 38   | 32   | 25   | 35               | 46 | 48  | 49  | 46        | 46                   | 44   | 37   | 31   | 40               |
|            | 139  | 4                           | 44 | 45  | 46  | 44        | 43                   | 41   | 35   | 28   | 38               | 49 | 51  | 52  | 49        | 49                   | 47   | 40   | 34   | 43               |
|            | 56   | 1                           | 34 | 35  | 36  | 34        | 33                   | 31   | 25   | <15  | 28               | 40 | 41  | 42  | 40        | 39                   | 37   | 31   | 24   | 34               |
| 160        | 111  | 2                           | 41 | 42  | 43  | 41        | 40                   | 38   | 32   | 25   | 35               | 47 | 48  | 49  | 47        | 46                   | 44   | 38   | 31   | 41               |
| 100        | 167  | 5                           | 45 | 46  | 47  | 45        | 44                   | 42   | 36   | 29   | 39               | 51 | 52  | 53  | 51        | 50                   | 48   | 42   | 35   | 45               |
|            | 222  | 9                           | 48 | 49  | 50  | 48        | 47                   | 45   | 39   | 32   | 42               | 53 | 55  | 56  | 53        | 53                   | 51   | 45   | 38   | 47               |
|            | 90   | 1                           | 38 | 40  | 41  | 38        | 38                   | 36   | 29   | 23   | 32               | 44 | 46  | 47  | 44        | 44                   | 42   | 35   | 29   | 38               |
| 200        | 181  | 3                           | 45 | 46  | 47  | 45        | 44                   | 42   | 36   | 29   | 39               | 51 | 52  | 53  | 51        | 50                   | 48   | 42   | 35   | 45               |
| 200        | 271  | 8                           | 48 | 50  | 51  | 48        | 48                   | 46   | 40   | 33   | 42               | 54 | 56  | 57  | 54        | 54                   | 52   | 46   | 39   | 48               |
|            | 361  | 13                          | 51 | 52  | 54  | 51        | 51                   | 48   | 42   | 36   | 45               | 57 | 58  | 60  | 57        | 57                   | 54   | 48   | 42   | 51               |
|            | 139  | 1                           | 42 | 43  | 44  | 42        | 41                   | 39   | 33   | 26   | 36               | 48 | 49  | 50  | 48        | 47                   | 45   | 39   | 32   | 42               |
| 250        | 278  | 4                           | 48 | 49  | 50  | 48        | 47                   | 45   | 39   | 32   | 42               | 54 | 55  | 56  | 54        | 53                   | 51   | 45   | 38   | 48               |
| 230        | 417  | 10                          | 51 | 52  | 54  | 51        | 51                   | 48   | 42   | 36   | 45               | 57 | 59  | 60  | 57        | 57                   | 55   | 48   | 42   | 51               |
|            | 555  | 17                          | 54 | 55  | 56  | 54        | 53                   | 51   | 45   | 38   | 48               | 60 | 61  | 62  | 60        | 59                   | 57   | 51   | 44   | 54               |
|            | 222  | 1                           | 45 | 46  | 47  | 45        | 44                   | 42   | 36   | 29   | 39               | 51 | 52  | 53  | 51        | 50                   | 48   | 42   | 35   | 45               |
| 315        | 445  | 5                           | 50 | 52  | 53  | 50        | 50                   | 48   | 41   | 35   | 44               | 57 | 58  | 59  | 57        | 56                   | 54   | 48   | 41   | 51               |
| CI C       | 667  | 12                          | 54 | 55  | 56  | 54        | 53                   | 51   | 45   | 38   | 48               | 60 | 61  | 62  | 60        | 59                   | 57   | 51   | 44   | 54               |
|            | 889  | 22                          | 56 | 57  | 58  | 56        | 55                   | 53   | 47   | 40   | 50               | 62 | 64  | 65  | 62        | 62                   | 60   | 53   | 47   | 56               |
|            | 347  | 2                           | 47 | 48  | 49  | 47        | 46                   | 44   | 38   | 31   | 41               | 54 | 55  | 56  | 54        | 53                   | 51   | 45   | 38   | 48               |
| 400        | 694  | 6                           | 52 | 53  | 55  | 52        | 52                   | 49   | 43   | 37   | 46               | 59 | 60  | 61  | 59        | 58                   | 56   | 50   | 43   | 53               |
| 400        | 1042 | 14                          | 55 | 57  | 58  | 55        | 55                   | 53   | 46   | 40   | 49               | 62 | 63  | 64  | 62        | 61                   | 59   | 53   | 46   | 56               |
|            | 1389 | 25                          | 57 | 59  | 60  | 57        | 57                   | 55   | 49   | 42   | 51               | 64 | 65  | 66  | 64        | 63                   | 61   | 55   | 48   | 58               |

|            |      |                             |     |     | L <sub>w</sub> | (dB) at <i>L</i> | P <sub>t</sub> =600 | Ра   |      |      | L <sub>p</sub> A |    |     | Lw  | (dB) at <i>L</i> | ∆P <sub>t</sub> =800 | Ра   |      |      | L <sub>p</sub> A |
|------------|------|-----------------------------|-----|-----|----------------|------------------|---------------------|------|------|------|------------------|----|-----|-----|------------------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s  | ΔP <sub>t</sub> min<br>(Pa) | 63  | 125 | 250            | 500              | 1000                | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500              | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 35   | 0                           | 38  | 40  | 41             | 38               | 38                  | 36   | 29   | 23   | 32               | 41 | 42  | 43  | 41               | 40                   | 38   | 32   | 25   | 35               |
| 125        | 69   | 1                           | 45  | 47  | 48             | 45               | 45                  | 43   | 37   | 30   | 39               | 48 | 49  | 50  | 48               | 47                   | 45   | 39   | 32   | 42               |
| 125        | 104  | 2                           | 50  | 51  | 52             | 50               | 49                  | 47   | 41   | 34   | 44               | 52 | 53  | 54  | 52               | 51                   | 49   | 43   | 36   | 46               |
|            | 139  | 4                           | 53  | 54  | 55             | 53               | 52                  | 50   | 44   | 37   | 47               | 55 | 56  | 57  | 55               | 54                   | 52   | 46   | 39   | 49               |
|            | 56   | 1                           | 43  | 45  | 46             | 43               | 43                  | 41   | 34   | 28   | 37               | 46 | 47  | 48  | 46               | 45                   | 43   | 37   | 30   | 40               |
| 160        | 111  | 2                           | 50  | 51  | 52             | 50               | 49                  | 47   | 41   | 34   | 44               | 52 | 54  | 55  | 52               | 52                   | 50   | 43   | 37   | 46               |
| 100        | 167  | 5                           | 54  | 55  | 56             | 54               | 53                  | 51   | 45   | 38   | 48               | 56 | 58  | 59  | 56               | 56                   | 54   | 47   | 41   | 50               |
|            | 222  | 9                           | 57  | 58  | 59             | 57               | 56                  | 54   | 48   | 41   | 51               | 59 | 60  | 62  | 59               | 59                   | 56   | 50   | 44   | 53               |
|            | 90   | 1                           | 48  | 49  | 50             | 48               | 47                  | 45   | 39   | 32   | 42               | 50 | 52  | 53  | 50               | 50                   | 48   | 41   | 35   | 44               |
| 200        | 181  | 3                           | 54  | 56  | 57             | 54               | 54                  | 52   | 45   | 39   | 48               | 57 | 58  | 59  | 57               | 56                   | 54   | 48   | 41   | 51               |
| 200        | 271  | 8                           | 58  | 59  | 60             | 58               | 57                  | 55   | 49   | 42   | 52               | 60 | 62  | 63  | 60               | 60                   | 58   | 52   | 45   | 54               |
|            | 361  | 13                          | 61  | 62  | 63             | 61               | 60                  | 58   | 52   | 45   | 55               | 63 | 64  | 65  | 63               | 62                   | 60   | 54   | 47   | 57               |
|            | 139  | 1                           | 61  | 53  | 54             | 51               | 51                  | 49   | 42   | 36   | 45               | 54 | 55  | 56  | 54               | 53                   | 51   | 45   | 38   | 48               |
| 250        | 278  | 4                           | 57  | 59  | 60             | 57               | 57                  | 55   | 49   | 42   | 51               | 60 | 61  | 62  | 60               | 59                   | 57   | 51   | 44   | 54               |
| 250        | 417  | 10                          | 61  | 62  | 63             | 61               | 60                  | 58   | 52   | 45   | 55               | 64 | 65  | 66  | 64               | 63                   | 61   | 55   | 48   | 58               |
|            | 555  | 17                          | 63  | 65  | 66             | 63               | 63                  | 61   | 55   | 48   | 57               | 66 | 67  | 68  | 66               | 65                   | 63   | 57   | 50   | 60               |
|            | 222  | 1                           | 55  | 56  | 57             | 55               | 54                  | 52   | 46   | 39   | 49               | 57 | 59  | 60  | 57               | 57                   | 55   | 49   | 42   | 51               |
| 315        | 445  | 5                           | 60  | 62  | 63             | 60               | 60                  | 58   | 52   | 45   | 54               | 63 | 64  | 666 | 63               | 63                   | 60   | 54   | 48   | 57               |
| 515        | 667  | 12                          | 64  | 65  | 66             | 64               | 63                  | 61   | 55   | 48   | 58               | 66 | 68  | 69  | 66               | 66                   | 64   | 58   | 51   | 60               |
|            | 889  | 22                          | 66  | 67  | 68             | 66               | 65                  | 63   | 57   | 50   | 60               | 69 | 70  | 71  | 69               | 68                   | 66   | 60   | 53   | 63               |
|            | 347  | 2                           | 957 | 59  | 60             | 57               | 57                  | 55   | 49   | 42   | 51               | 60 | 62  | 63  | 60               | 60                   | 58   | 51   | 45   | 54               |
| 400        | 694  | 6                           | 63  | 64  | 65             | 63               | 62                  | 60   | 54   | 47   | 57               | 65 | 67  | 68  | 65               | 65                   | 63   | 57   | 50   | 59               |
| -00        | 1042 | 14                          | 66  | 67  | 68             | 66               | 65                  | 63   | 57   | 50   | 60               | 69 | 70  | 71  | 69               | 68                   | 66   | 60   | 53   | 63               |
|            | 1389 | 25                          | 68  | 69  | 70             | 68               | 67                  | 65   | 59   | 52   | 62               | 71 | 72  | 73  | 71               | 70                   | 68   | 62   | 55   | 65               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741  $\,$ 

![](_page_22_Picture_5.jpeg)

## Optima-RS Radiated sound levels

|            |      |                             |    | _   | Lw  | (dB) at <i>L</i> | ∆P <sub>t</sub> =200 | Ра   |      |      | L <sub>p</sub> A |    |     | Lw  | (dB) at <i>L</i> | ∆P <sub>t</sub> =400 | Ра   |      |      | L <sub>p</sub> A |
|------------|------|-----------------------------|----|-----|-----|------------------|----------------------|------|------|------|------------------|----|-----|-----|------------------|----------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s  | ΔP <sub>t</sub> min<br>(Pa) | 63 | 125 | 250 | 500              | 1000                 | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500              | 1000                 | 2000 | 4000 | 8000 | dB(A)            |
|            | 35   | 0                           | 36 | 37  | 33  | 24               | <15                  | <15  | <15  | <15  | <15              | 39 | 40  | 36  | 27               | <15                  | <15  | <15  | <15  | 21               |
| 105        | 69   | 1                           | 43 | 45  | 40  | 32               | 24                   | <15  | <15  | <15  | 25               | 47 | 48  | 44  | 35               | 28                   | 22   | <15  | <15  | 29               |
| 125        | 104  | 2                           | 48 | 49  | 45  | 36               | 29                   | 23   | <15  | <15  | 30               | 51 | 51  | 48  | 40               | 32                   | 26   | 20   | <15  | 33               |
|            | 139  | 4                           | 51 | 52  | 48  | 39               | 32                   | 26   | 20   | <15  | 33               | 55 | 56  | 52  | 43               | 35                   | 29   | 23   | <15  | 36               |
|            | 56   | 1                           | 37 | 38  | 34  | 25               | <15                  | <15  | <15  | <15  | 36               | 40 | 41  | 37  | 28               | 21                   | <15  | <15  | <15  | 22               |
| 140        | 111  | 2                           | 45 | 46  | 42  | 33               | 25                   | <15  | <15  | <15  | 26               | 48 | 49  | 45  | 36               | 29                   | 23   | <15  | <15  | 30               |
| 160        | 167  | 5                           | 49 | 50  | 46  | 37               | 30                   | 24   | <15  | <15  | 31               | 53 | 54  | 50  | 41               | 33                   | 27   | 21   | <15  | 34               |
|            | 222  | 9                           | 52 | 54  | 49  | 41               | 33                   | 27   | 21   | <15  | 34               | 56 | 57  | 53  | 44               | 37                   | 31   | 25   | <15  | 38               |
|            | 90   | 1                           | 38 | 40  | 35  | 27               | <15                  | <15  | <15  | <15  | 20               | 42 | 43  | 39  | 30               | 23                   | <15  | <15  | <15  | 24               |
| 200        | 181  | 3                           | 46 | 48  | 43  | 35               | 27                   | 21   | <15  | <15  | 28               | 50 | 51  | 47  | 38               | 31                   | 25   | <15  | <15  | 32               |
| 200        | 271  | 8                           | 51 | 52  | 48  | 39               | 32                   | 26   | <15  | <15  | 33               | 54 | 56  | 51  | 43               | 35                   | 29   | 23   | <15  | 36               |
|            | 361  | 13                          | 54 | 56  | 51  | 42               | 35                   | 29   | 23   | <15  | 36               | 58 | 59  | 55  | 46               | 39                   | 33   | 27   | <15  | 40               |
|            | 139  | 1                           | 40 | 41  | 37  | 28               | 20                   | <15  | <15  | <15  | 21               | 43 | 44  | 40  | 31               | 24                   | <15  | <15  | <15  | 25               |
| 250        | 278  | 4                           | 48 | 49  | 45  | 36               | 28                   | 22   | <15  | <15  | 29               | 51 | 52  | 48  | 39               | 32                   | 26   | 20   | <15  | 33               |
| 200        | 417  | 10                          | 52 | 54  | 49  | 40               | 33                   | 27   | 21   | <15  | 34               | 56 | 57  | 53  | 44               | 37                   | 31   | 25   | <15  | 38               |
|            | 555  | 17                          | 56 | 57  | 53  | 44               | 36                   | 30   | 24   | <15  | 37               | 59 | 60  | 56  | 47               | 40                   | 34   | 28   | 20   | 41               |
|            | 222  | 1                           | 41 | 43  | 38  | 29               | 22                   | <15  | <15  | <15  | 23               | 45 | 46  | 42  | 33               | 26                   | <15  | <15  | <15  | 27               |
| 315        | 445  | 5                           | 49 | 51  | 46  | 37               | 30                   | 24   | <15  | <15  | 31               | 53 | 54  | 50  | 41               | 34                   | 28   | 22   | <15  | 35               |
| 515        | 667  | 12                          | 54 | 55  | 51  | 42               | 35                   | 29   | 23   | <15  | 36               | 58 | 59  | 55  | 46               | 39                   | 33   | 27   | <15  | 40               |
|            | 889  | 22                          | 57 | 59  | 54  | 46               | 38                   | 32   | 26   | <15  | 39               | 61 | 62  | 58  | 49               | 42                   | 36   | 30   | 22   | 43               |
|            | 347  | 2                           | 43 | 44  | 40  | 31               | 23                   | <15  | <15  | <15  | 24               | 46 | 48  | 43  | 34               | 27                   | 21   | <15  | <15  | 28               |
| 400        | 694  | 6                           | 51 | 52  | 48  | 39               | 32                   | 26   | <15  | <15  | 33               | 54 | 56  | 51  | 43               | 35                   | 29   | 23   | <15  | 36               |
| 400        | 1042 | 14                          | 56 | 57  | 53  | 44               | 36                   | 30   | 24   | <15  | 37               | 59 | 61  | 56  | 47               | 40                   | 34   | 28   | 21   | 41               |
|            | 1389 | 25                          | 59 | 60  | 56  | 47               | 40                   | 34   | 28   | 20   | 41               | 63 | 64  | 60  | 51               | 44                   | 38   | 32   | 24   | 45               |

|            |      |                |    |     | Lw  | (dB) at <i>L</i> | P <sub>t</sub> =600 | Pa   |      | _    | L <sub>p</sub> A |    |     | L,  | (dB) at <i>L</i> | P <sub>t</sub> =800 | Pa   |      |      | L <sub>p</sub> A |
|------------|------|----------------|----|-----|-----|------------------|---------------------|------|------|------|------------------|----|-----|-----|------------------|---------------------|------|------|------|------------------|
| ØD<br>(mm) | l/s  | ∆P,min<br>(Pa) | 63 | 125 | 250 | 500              | 1000                | 2000 | 4000 | 8000 | dB(A)            | 63 | 125 | 250 | 500              | 1000                | 2000 | 4000 | 8000 | dB(A)            |
|            | 35   | 0              | 41 | 42  | 38  | 29               | 22                  | <15  | <15  | <15  | 23               | 42 | 44  | 39  | 31               | 23                  | <15  | <15  | <15  | 24               |
| 175        | 69   | 1              | 49 | 50  | 46  | 37               | 30                  | 24   | <15  | <15  | 31               | 50 | 51  | 47  | 38               | 31                  | 25   | <15  | <15  | 32               |
| 120        | 104  | 2              | 53 | 55  | 50  | 41               | 34                  | 28   | 22   | <15  | 35               | 55 | 56  | 52  | 43               | 36                  | 30   | 24   | <15  | 37               |
|            | 139  | 4              | 56 | 58  | 53  | 45               | 37                  | 31   | 25   | <15  | 38               | 58 | 59  | 55  | 46               | 39                  | 33   | 27   | <15  | 40               |
| 160        | 56   | 1              | 42 | 43  | 39  | 30               | 23                  | <15  | <15  | <15  | 24               | 44 | 45  | 41  | 32               | 24                  | <15  | <15  | <15  | 25               |
|            | 111  | 2              | 50 | 51  | 47  | 38               | 31                  | 25   | <15  | <15  | 32               | 51 | 53  | 48  | 40               | 32                  | 26   | 20   | <15  | 33               |
| 100        | 167  | 5              | 55 | 56  | 52  | 43               | 35                  | 29   | 23   | <15  | 36               | 56 | 57  | 53  | 44               | 37                  | 31   | 25   | <15  | 38               |
|            | 222  | 9              | 58 | 59  | 55  | 46               | 39                  | 33   | 27   | <15  | 40               | 59 | 60  | 56  | 47               | 40                  | 34   | 28   | 20   | 41               |
|            | 90   | 1              | 44 | 45  | 41  | 32               | 25                  | <15  | <15  | <15  | 26               | 45 | 47  | 42  | 34               | 26                  | 20   | <15  | <15  | 27               |
| 200        | 181  | 3              | 52 | 53  | 49  | 40               | 33                  | 27   | 21   | <15  | 34               | 53 | 55  | 50  | 41               | 34                  | 28   | 22   | <15  | 35               |
|            | 271  | 8              | 56 | 58  | 53  | 45               | 37                  | 31   | 25   | <15  | 38               | 58 | 59  | 55  | 46               | 39                  | 33   | 27   | <15  | 40               |
|            | 361  | 13             | 60 | 61  | 57  | 48               | 41                  | 35   | 29   | 21   | 42               | 61 | 63  | 58  | 49               | 42                  | 36   | 30   | 23   | 43               |
|            | 139  | 1              | 45 | 47  | 42  | 33               | 26                  | 20   | <15  | <15  | 27               | 47 | 48  | 44  | 35               | 28                  | 22   | <15  | <15  | 29               |
| 250        | 278  | 4              | 53 | 55  | 50  | 41               | 34                  | 28   | 22   | <15  | 35               | 55 | 56  | 52  | 43               | 36                  | 30   | 24   | <15  | 37               |
| 250        | 417  | 10             | 58 | 59  | 55  | 46               | 39                  | 33   | 27   | <15  | 40               | 59 | 61  | 56  | 48               | 40                  | 34   | 28   | 21   | 41               |
|            | 555  | 17             | 61 | 63  | 58  | 49               | 42                  | 36   | 30   | 23   | 43               | 63 | 64  | 60  | 51               | 44                  | 38   | 32   | 24   | 45               |
|            | 222  | 1              | 47 | 48  | 44  | 35               | 28                  | 22   | <15  | <15  | 29               | 48 | 50  | 45  | 37               | 29                  | 23   | <15  | <15  | 30               |
| 215        | 445  | 5              | 55 | 56  | 52  | 43               | 36                  | 30   | 24   | <15  | 37               | 57 | 58  | 54  | 45               | 37                  | 31   | 25   | <15  | 38               |
| 212        | 667  | 12             | 60 | 61  | 57  | 48               | 41                  | 35   | 29   | 21   | 42               | 61 | 63  | 58  | 50               | 42                  | 36   | 30   | 23   | 43               |
|            | 889  | 22             | 63 | 64  | 60  | 51               | 44                  | 38   | 32   | 24   | 45               | 65 | 66  | 62  | 53               | 46                  | 40   | 34   | 26   | 47               |
|            | 347  | 2              | 48 | 50  | 45  | 37               | 29                  | 23   | <15  | <15  | 30               | 50 | 51  | 47  | 38               | 31                  | 25   | <15  | <15  | 32               |
| 400        | 694  | 6              | 57 | 58  | 54  | 45               | 38                  | 32   | 26   | <15  | 39               | 58 | 59  | 55  | 46               | 39                  | 33   | 27   | <15  | 40               |
| 400        | 1042 | 14             | 61 | 63  | 58  | 50               | 42                  | 36   | 30   | 23   | 43               | 63 | 64  | 60  | 51               | 44                  | 38   | 32   | 24   | 45               |
|            | 1389 | 25             | 65 | 66  | 62  | 53               | 46                  | 40   | 34   | 26   | 47               | 66 | 68  | 63  | 55               | 47                  | 41   | 35   | 28   | 48               |

All above acoustic data's are without silencer and any room absorption Acoustic data presented in accordance to EN ISO 5135 and EN ISO 3741  $\,$ 

![](_page_23_Picture_5.jpeg)

# Accessories

# **LDC** Circular Attenuator

![](_page_24_Picture_3.jpeg)

Circular silencer LDC designed to fit directly to Optima-R and Optima-RI VAV terminal units. The inlet and outlet connection complies with the spiral duct standard. The LDC effectively reduces noise levels on the discharge of the VAV unit or in the duct work. Two silencers can be used in series together in installations where noise reduction is a particularly strong requirement, this can be very effective. For the most effective noise reduction, the silencer should be fitted immediately downstream of the VAV terminal unit and before the accessories such as Optima-R-MO (Round Multi-outlet units) or after the Accessories such as VBC (Water Batteries). The silencer is delivered in various fixed lengths and is insulation thickness 100 mm. All LDC silencers are fitted with tightness rubber gasket to assure leak less connection. MK can be used to facilitate the connection and mounting of the system.

![](_page_24_Figure_5.jpeg)

| Size     | Ø D<br>(mm) | L <sub>nom</sub><br>(mm) | Ø D <sub>1</sub><br>(mm) | L<br>(mm) | m<br>(kg) |
|----------|-------------|--------------------------|--------------------------|-----------|-----------|
| 100-300  | 97          | 300                      | 200                      | 360       | 2,28      |
| 100-600  | 97          | 600                      | 200                      | 660       | 4,09      |
| 100-900  | 97          | 900                      | 200                      | 960       | 5,18      |
| 100-1200 | 97          | 1200                     | 200                      | 1260      | 6,46      |
| 125-600  | 122         | 600                      | 224                      | 665       | 4,39      |
| 125-900  | 122         | 900                      | 224                      | 965       | 6,2       |
| 125-1200 | 122         | 1200                     | 224                      | 1265      | 7,47      |
| 150-600  | 147         | 600                      | 250                      | 600       | 5,37      |
| 160-600  | 157         | 600                      | 260                      | 670       | 5,37      |
| 160-900  | 157         | 900                      | 260                      | 970       | 7,48      |
| 200-600  | 197         | 600                      | 300                      | 685       | 6,9       |
| 200-900  | 197         | 900                      | 300                      | 985       | 9,74      |
| 250-600  | 247         | 600                      | 355                      | 600       | 8,55      |
| 250-900  | 247         | 900                      | 355                      | 900       | 11,7      |
| 315-600  | 312         | 600                      | 415                      | 600       | 11,8      |
| 315-900  | 312         | 900                      | 415                      | 900       | 16,3      |
| 355-900  | 352         | 900                      | 560                      | 900       | 25,2      |
| 400-900  | 397         | 900                      | 600                      | 900       | 24,3      |

![](_page_24_Picture_7.jpeg)

![](_page_25_Picture_1.jpeg)

**Optima-SA** Rectangular Sound Attenuator

Rectangular silencer Optima-SA designed to fit directly to Optima-RS VAV terminal units. The inlet and outlet connection is designed to effectively and easily be mounted to the Optima-RS units.

The Optima-SA effectively reduces noise levels on the discharge of the VAV unit. Two silencers can be used in series together in installations where noise reduction is a particularly strong requirement, this can be very effective. For the most effective noise reduction, the silencer should be fitted immediately downstream of the VAV terminal unit and before the accessories such as Optima-RS-MO (Rectangular to round Multi-outlet units) or after the Accessories such as VBR (Water Batteries). The silencer is delivered in fixed length of 1000mm and is insulated with thicknesses which vary to assure highest attenuation possible without compromising an increase in the pressure loss.

![](_page_25_Figure_5.jpeg)

| Size         | W<br>(mm) | H<br>(mm) | L<br>(mm) | m<br>(kg) |
|--------------|-----------|-----------|-----------|-----------|
| 200x200-1000 | 200       | 200       | 1000      | 9,1       |
| 250x200-1000 | 250       | 200       | 1000      | 10,2      |
| 400x200-1000 | 400       | 200       | 1000      | 13,4      |
| 500x250-1000 | 500       | 250       | 1000      | 19,1      |
| 600x350-1000 | 600       | 350       | 1000      | 22,7      |
| 700x400-1000 | 700       | 400       | 1000      | 26,4      |

![](_page_25_Picture_7.jpeg)

# Optima-R-MO & RI-MO Multioutlet box

![](_page_26_Picture_2.jpeg)

Optima-R-MO are Multi-Outlet plenum boxes which are designed to be used with Round VAV units. Multi-Outlet plenum boxes are as standard without any insulation internally or externally. On request following boxes can be insulated as required on site.

Multi outlet plenum boxes are designed to facilitate installation of VAV units to multiple diffusers for supply or return air application.

![](_page_26_Figure_5.jpeg)

Optima-RS-MO are Multi-Outlet plenum boxes which are designed to be used with Round to rectangular outlet VAV units. Multi-Outlet plenum boxes are as standard without any insulation internally or externally. On request following boxes can be insulated as required on site. Multi outlet plenum boxes are designed to facilitate installation of VAV units to multiple diffusers for supply or return air application.

![](_page_26_Figure_7.jpeg)

| Size    | ØD <sub>in</sub><br>(mm) | ØD <sub>out</sub><br>(mm) | B<br>(mm) | H<br>(mm) | L<br>(mm) |
|---------|--------------------------|---------------------------|-----------|-----------|-----------|
| 100-80  | 97                       | 78                        | 250       | 190       | 150       |
| 100-100 | 97                       | 97                        | 300       | 190       | 170       |
| 125-100 | 122                      | 97                        | 300       | 210       | 170       |
| 125-125 | 122                      | 122                       | 350       | 210       | 190       |
| 140-100 | 137                      | 97                        | 300       | 230       | 170       |
| 140-140 | 137                      | 137                       | 380       | 230       | 210       |
| 160-125 | 157                      | 122                       | 350       | 250       | 190       |
| 160-160 | 157                      | 157                       | 420       | 250       | 230       |
| 180-140 | 177                      | 137                       | 380       | 270       | 210       |
| 180-180 | 177                      | 177                       | 460       | 270       | 250       |
| 200-160 | 197                      | 157                       | 420       | 290       | 230       |
| 200-200 | 197                      | 197                       | 500       | 290       | 270       |
| 225-180 | 222                      | 177                       | 460       | 320       | 250       |
| 225-225 | 222                      | 222                       | 560       | 320       | 300       |
| 250-200 | 247                      | 197                       | 500       | 340       | 270       |
| 250-250 | 247                      | 247                       | 610       | 340       | 330       |
| 280-225 | 277                      | 222                       | 560       | 370       | 300       |
| 280-280 | 277                      | 277                       | 670       | 370       | 370       |
| 315-250 | 312                      | 247                       | 610       | 410       | 330       |
| 315-315 | 312                      | 312                       | 740       | 410       | 390       |
| 355-280 | 352                      | 277                       | 670       | 450       | 370       |
| 355-355 | 352                      | 352                       | 820       | 450       | 430       |
| 400-315 | 397                      | 312                       | 740       | 480       | 390       |
| 400-400 | 397                      | 397                       | 910       | 480       | 470       |

# Optima-RS-MO

| Multioutlet box |
|-----------------|
|-----------------|

| Size            | W<br>(mm) | H<br>(mm) | ØD <sub>out</sub><br>(mm) | L<br>(mm) |
|-----------------|-----------|-----------|---------------------------|-----------|
| 200x200-80      | 200       | 200       | 78                        | 190       |
| 200 x 200 - 100 | 200       | 200       | 98                        | 190       |
| 250 x 200 - 100 | 250       | 200       | 98                        | 190       |
| 250 x 200 - 125 | 250       | 200       | 122                       | 190       |
| 400 x 200 - 125 | 400       | 200       | 122                       | 190       |
| 400 x 200 - 140 | 400       | 200       | 137                       | 210       |
| 400 x 200 - 160 | 400       | 200       | 157                       | 210       |
| 400 x 200 - 180 | 400       | 200       | 177                       | 250       |
| 500 x 250 -160  | 500       | 250       | 157                       | 250       |
| 500 x 250 -180  | 500       | 250       | 177                       | 330       |
| 500 x 250 -200  | 500       | 250       | 197                       | 330       |
| 600 x 350 - 200 | 600       | 350       | 197                       | 330       |
| 600 x 350 - 250 | 600       | 350       | 247                       | 370       |
| 700 x 400 - 250 | 700       | 400       | 247                       | 370       |
| 700 x 400 - 315 | 700       | 400       | 312                       | 390       |

![](_page_26_Picture_12.jpeg)

![](_page_27_Picture_1.jpeg)

The stand-alone version, Argus-RC, is designed for control of heating and cooling in a single zone or a room. A system consists of different control units and a relay box. The control units are pre-programmed, but can be configured for a specific application by using the display and switches. (However, the default setting is in most cases applicable.)

The control units have built-in temperature sensors. An external temperature sensor can also be connected.

#### Controllers Heating and Cooling

![](_page_27_Picture_5.jpeg)

![](_page_27_Picture_6.jpeg)

Argus-RC Room Unit

Argus-RC-O Room Unit Occupancy H

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

![](_page_27_Picture_11.jpeg)

# **RC** Room controller

![](_page_28_Picture_2.jpeg)

RC is a room controller from the Argus series intended to control heating and cooling in a zone control system.

- Awarded design
- Simple installation
- On/Off or 0...10 V control
- Input for occupancy detector, window contact, condensation detector and change-over function

RC is a room controller from the Argus series. It does not have a communication connection.

#### Argus

Argus is a wide series of controllers which handle heating and cooling. The controllers are divided into two different series, With and Without communication capability. The controller group with no communication capability, to which RC belongs, are pre-programmed, stand-alone controllers. The controllers with communication are preprogrammed and are ready to be installed into a controller network to suit the communication type

#### Applications

The Argus controllers are suitable in buildings where you want optimal comfort and low energy consumption, for example offices, schools, shopping centres, airports, hotels and hospitals etc. See application examples on page 7.

#### Design

The controllers have a modern design. The design has been awarded the 2007 "iF product design award". The standard colour is white, but the frame and centre can be received in a number of different colours on inquiry. The units can be combined, offering many different effects.

#### Sensor

The controller has a built-in sensor. An external Pt1000sensor can also be used.

#### Actuators

RC can control 0...10 V DC valve actuators and/or 24 V AC thermal actuators.

#### Easy to install

The modular design with a separate bottom plate for wiring makes the whole Argus series easy to install and commission. The bottom plate can be put into place before the electronics are installed. Mounting is directly on the wall or on an electrical connection box.

![](_page_28_Picture_21.jpeg)

![](_page_28_Picture_22.jpeg)

#### **Control states**

RC has control state:Heating and cooling in sequenceThe change-over function can be activated, see below.

#### **Operating modes**

There are three different operating modes: Stand-by, Occupied and Bypass. Occupied is the preset operating mode. It can be changed to Stand-by with a dipswitch. The operating modes can be activated via an occupancy detector.

**Stand-by :** The room is in an energy save mode and is not used at the moment. This can for example be during nights, weekends, evenings etc. The controller is prepared to change operating mode to Occupied if someone enters the room. Both heating and cooling are disconnected within a temperature interval around the applicable setpoint (heating setpoint value=-3°C, cooling setpoint=+3°C).

**Occupied :** The room is in use and is therefore in a comfort mode. The controller regulates the temperature around a heating setpoint (22°C) and a cooling setpoint (24°C).

**Bypass:** The temperature in the room is controlled in the same way as in operating mode Occupied. The output for forced ventilation is also active. Bypass is useful for example in conference rooms, where many people are present at the same time for a certain period of time.

After 10 minutes absence, the controller will automatically return to the preset operating mode (Occupied or Stand-by).

#### **Occupancy detector**

By connecting an occupancy detector, RC can switch between Bypass and the preset operating mode (Occupied or Stand-by). The temperature is then controlled according to requirement, which saves energy and keeps the temperature at a comfortable level.

#### Change-over function

RC has an input for change-over that automatically resets output UO1 to operate with heating or cooling function. The input can be connected to sensors of type PT1000 and have the sensor mounted so that it senses the temperature on the supply pipe to the coil.

When the temperature exceeds 22°C, the output function is set to heating and when the temperature drops below 18°C, the output is set to cooling.

As an alternative, a potential-free contact can be used. When the contact is open the controller works with the heating function and when it is closed, with the cooling function. To ensure satisfactory functioning using sensor, the system must have continuous primary circuit circulation. When the change-over function is not used, the input must be left disconnected.

#### Setpoint

In Occupied mode, the controller operates from a heating setpoint (22°C) or a cooling setpoint (24°C) that can be changed locally using dipswitches.

The setpoint can be adjusted up and down (±3°C) with the knob on the front of the controller. Switching between heating and cooling setpoints is done automatically in the controller depending on the heating and cooling requirement.

#### **Built-in safety functions**

RC has an input for a condensation detector which prevents condensation. The controller also has frost protection. It prevents frost damages by by ensuring that the room temperature does not drop below 8°C when the controller is in Off-mode (caused by open window).

#### Indications

The controller has an LED shaped like a thermometer on the front. A red indication is shown when heating control is functional and a blue indication when cooling control is active. No LED indication shows that neither heating nor cooling control is active.

![](_page_29_Picture_23.jpeg)

#### Actuator exercise

All actuators are exercised. The exercise takes place at a 23 hours interval. An opening signal is sent to the actuator for as long time as the run time has been configured. Then a closing signal is sent for as long time and the exercise is finished.

#### Application example

![](_page_29_Picture_27.jpeg)

![](_page_29_Picture_28.jpeg)

| Technical data                            |                                                                           |
|-------------------------------------------|---------------------------------------------------------------------------|
| Supply voltage                            | 1830 V AC, 5060 Hz                                                        |
| Internal consumption                      | 2.5 VA                                                                    |
| Ambient temperature                       | 050°C                                                                     |
| Storage temperature                       | -20+70°C                                                                  |
| Ambient humidity                          | Max 90% RH                                                                |
| Protection class                          | IP20                                                                      |
| Built-in temperature sensor               | NTC type, measuring range 050°C, accuracy ±0.5°C at 1530°C                |
| Material, casing                          | Polycarbonate, PC                                                         |
| Weight                                    | 110 g                                                                     |
| Colour                                    | Cover: Polar white RAL9010                                                |
|                                           | Bottom plate: Light gray                                                  |
|                                           | Is also available in other colours on inquiry, contact systemair for more |
|                                           | Information.                                                              |
| CE                                        | This product conforms with the requirements of European EMC standards     |
|                                           | CENELEC EN 61000-6-1 and EN 61000-6-3, and the requirements of            |
|                                           | European LVD standard IEC 60 730-1. It carries the CE mark.               |
| Inputs                                    |                                                                           |
| External room sensor                      | PT1000-sensor, 050°C. Suitable sensors are Argus's                        |
|                                           | TG-R5/PT1000,TG-UH/PT1000 and TG-A1/PT1000.                               |
| Change-over alt. potential-free contact   | PT1000-sensor, 0100°C. Suitable sensor is Argus's TG-A1/PT1000.           |
| Occupancy detector                        | Closing potential-free contact. Suitable occupancy detector is Argus's    |
|                                           | IR24-P.                                                                   |
|                                           |                                                                           |
| Condensation detector alt. window contact | Argus's condensation detector KG-A/1 resp. potential-free contact         |
|                                           |                                                                           |
| Outputs                                   |                                                                           |
| Forced ventilation                        | 24 V AC actuator, max 0.5 A                                               |
| Valve actuator alt, thermal actuator      | 2 outputs                                                                 |

| Valve actuator alt. thermal actuator | 2 outputs                                                                      |
|--------------------------------------|--------------------------------------------------------------------------------|
| Valve actuator                       | 010 V DC, max 5 mA                                                             |
| Thermal actuator                     | 24 V AC, max 2.0 A                                                             |
| Control                              | Heating or cooling                                                             |
| Actuator exercise                    | 23 hours interval Terminal blocks Lift type for cable cross-section 2.1 $mm^2$ |

#### Basic setpoint heating, setting with dipswitches

The ON-position is marked on the dipswitch. The cooling setpoint is 2°C higher.

| Basic setpoint, heating (°C) | SW1 | SW2 |
|------------------------------|-----|-----|
| 20                           | OFF | OFF |
| 22 (FS)                      | OFF | ON  |
| 24                           | ON  | OFF |
| 26                           | ON  | ON  |

#### Other dipswitches

|     | ON                                                               | OFF                                                | Comment                       |
|-----|------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| SW3 | Stand-by                                                         | Occupied (FS)                                      | Preset operating mode         |
| SW4 | DI, window contact. Closed contact indi-<br>cates closed window. | CI, Argus's condensation detector,<br>KG-A/1 (FS). | Function terminal 33, DI2/CI. |
| SW5 | Digital output for 24 V AC thermal actua-<br>tor.                | Analogue output for 010 V DC valve actuator (FS).  | Function terminal 23, UO1.    |
| SW6 | Digital output for 24 V AC thermal actua-<br>tor.                | Analogue output for 010 V DC valve actuator (FS).  | Function terminal 24, UO2.    |
| SW7 | External, PT1000-sensor                                          | Internal NTC-sensor (FS)                           | Temperature sensor            |

![](_page_30_Picture_8.jpeg)

#### Wiring

| Terminal | Designation | Operation                                                                  |
|----------|-------------|----------------------------------------------------------------------------|
| 10       | G           | Supply voltage 24 V AC                                                     |
| 11       | GO          | Supply voltage 0 V                                                         |
| 12       | D01         | Output for forced ventilation                                              |
| 13-14    |             | No function                                                                |
| 20       | GDO         | 24 V AC out common for DO                                                  |
| 21       | GO          | 0 V common for UO (when 010 V actuator is used)                            |
| 22       |             | No function                                                                |
| 23       | U01         | Output for 010 V valve actuator alt. thermal actuator. Heating or cooling. |
| 24       | U02         | Output for 010 V valve actuator alt. thermal actuator. Heating or cooling. |
| 30       | AI1         | Input for external sensor                                                  |
| 31       | UI1         | Input for change-over sensor alt. potential-free contact                   |
| 32       | DI1         | Input for occupancy detector                                               |
| 33       | DI2/CI      | Input for Argus's condensation detector KG-A/1 alt. window contact         |
| 40       | +C          | 24 V DC out common for UI and DI                                           |
| 41       | AGnd        | Analogue ground                                                            |
| 42-43    |             | No function                                                                |

#### Dimensions

![](_page_31_Picture_4.jpeg)

мм

#### Product documentation

| Document                             | Туре                                                              |
|--------------------------------------|-------------------------------------------------------------------|
| Instruction Argus RC                 | Instruction for RC                                                |
| Product sheet TG-R4/PT1000, TG-R5/PT | Information about room sensors, outdoor sensors and               |
| Product sheet TG-UH/PT               | strap-on sensors suitable for RC                                  |
| Product sheet TG-A1/PT               |                                                                   |
| Product sheet IR24-P                 | Information about occupancy detector suitable for RC              |
| Instruction IR24-P                   | Instruction for IR24-P                                            |
| Product sheet CS-1                   | Information about condensation detector for the Argus controllers |

![](_page_31_Picture_8.jpeg)

# Argus Midi Pre-programmed room controllers with communication

![](_page_32_Picture_2.jpeg)

Argus Midi has basically the same set-up as the standalone version. However, every individual zone system in every room can be connected to a bus line enabling communication with a central SCADA system via RS485 using EXOline or Modbus.

The room controllers are pre-programmed

# Relay Box

ROOM I

#### Controllers Heating and Cooling

![](_page_32_Figure_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

![](_page_32_Figure_11.jpeg)

Argus- RC-CH Room Unit Hidden Set-point

![](_page_32_Picture_13.jpeg)

Argus- RC-C Room Unit

![](_page_32_Picture_15.jpeg)

![](_page_33_Picture_1.jpeg)

RC-CDO is a complete pre-programmed room controller from the Argus Midi series intended to control heating and cooling in a zone control system.

- Awarded design
- Communication via RS485 (Modbus or EXOline)
- Fast and safe configuration via Argus tool®
- Simple installation
- On/Off or 0...10 V control
- Backlit display
- Input for occupancy detector, window contact, condensation detector and change-over function

RC-CDO is a room controller from the Argus series. It has a display and communication via RS485 (Modbus or EXOline) for integration into systems.

#### Argus

Argus is a wide series of controllers which handle heating and cooling.

The controllers are divided into three different series, Mini, Midi and Maxi. Mini are pre-programmed,

stand-alone controllers. Maxi consists of freely programmable controllers with communication. The Midi group, to which RC-CDO belongs, are pre-programmed controllers with communication.

#### Applications

The Argus controllers are suitable in buildings where you want optimal comfort and low energy consumption, for example offices, schools, shopping centres, airports, hotels and hospitals etc.

#### Design

The controllers have a modern design. The design has been awarded the 2007 "iF product design award".

#### Sensor

The controller has a built-in sensor. An external Pt1000sensor can also be used.

#### Actuators

RC-CDO can control 0...10 V DC valve actuators and/or 24 V AC thermal actuators.

#### Easy to install

The modular design with a separate bottom plate for wiring makes the whole Argus series easy to install and commission. The bottom plate can be put into place before the electronics are installed. Mounting is directly on the wall or on an electrical connection box.

![](_page_33_Picture_25.jpeg)

#### Flexibility with communication

RC-CDO can be connected to a central SCADA-system via RS485 (EXOline or Modbus) and configured for a particular application using the cost-free configuration tool Argus tool<sup>®</sup>.

![](_page_33_Picture_28.jpeg)

#### **Display handling**

The display has the following indications: It is possible to set different parameter values in a FORCED VENTILATION CHANGEABLE VALUE

![](_page_34_Picture_3.jpeg)

parameter menu in the display, using the buttons on the controller. You change parameter values with the INCREASE and DECREASE buttons and confirm changes with the Occupancy button.

#### **Control states**

![](_page_34_Figure_6.jpeg)

RC-CDO can be configured for different control states/ control sequences:

- Heating
- Heating or cooling via the change-over function
- Heating/Heating
- Heating/Cooling
- Heating/Cooling with VAV-control and forced supply air function
- Heating/Cooling with VAV-control
- Cooling
- Cooling/Cooling

#### Operating modes

There are five different operating modes: Off, Unoccupied, Stand-by, Occupied and Bypass. Occupied is the preset operating mode. It can be changed to Stand-by in the parameter menu in the display. The operating modes can be activated via a central command, an occupancy detector or the Occupancy button.

**Off:** Heating and cooling are disconnected. However, the temperature must not drop below the set minimum tem-

perature (Factory setting (FS)=8°C). Operating mode Off is activated on open window.

**Unoccupied:** The room where the controller is placed is not used for an extended period, for example during holidays or long weekends. Both heating and cooling are disconnected within a temperature interval with configurable min/max temperatures (FS min=15°C, max=30°C).

**Stand-by:** The room is in an energy save mode and is not used at the moment. This can for example be during nights, weekends, evenings etc. The controller is prepared to change operating mode to Occupied if someone enters the room. Both heating and cooling are disconnected within a temperature interval around the applicable setpoint (FS heating setpoint value=-3°C, cooling setpoint=+3°C).

**Occupied:** The room is in use and is therefore in a comfort mode. The controller regulates the temperature around a heating setpoint (FS=22°C) and a cooling setpoint (FS=24°C).

**Bypass:** The temperature in the room is controlled in the same way as in operating mode Occupied. The output for forced ventilation is also active. Bypass is useful for example in conference rooms, where many people are present at the same time for a certain period of time. When Bypass has been activated by a press on the Occupancy button, the controller will automatically return to the preset operating mode (Occupied or Stand-by) after a configurable time (FS=2 hours). If an occupancy detector is used, the controller will automatically return to the preset operating mode after 10 minutes absence.

#### **Occupancy detector**

By connecting an occupancy detector, RC-CDO can switch between Bypass and the preset operating mode (Occupied or Stand-by). The temperature is then controlled according to requirement, which saves energy and keeps the temperature at a comfortable level.

#### The Occupancy button

If you press the Occupancy button for less than 5 seconds when the controller is in the preset operating mode, the controller changes to operating mode Bypass. If you press the button for less than 5 seconds when the controller is in Bypass, it changes operating mode to the preset operating mode.

When the Occupancy button is held depressed for more than 5 seconds, the controller changes operating mode to "Shutdown" (Off/Unoccupied), regardless of the current operating mode. Via the display or Argus tool<sup>®</sup>, you can configure which operating mode, Off or Unoccupied, should be activated on "Shutdown" (FS=Unoccupied). If you press the Occupancy button for less than 5 seconds in

![](_page_34_Picture_29.jpeg)

Shutdown, the controller returns to Bypass.

#### Forced ventilation

Argus has a built-in function for forced ventilation. A short press on the Occupancy button activates output DO1 for example for a damper.

#### Change-over function

RC-CDO has an input for change-over that automatically resets output UO1 to operate with heating or cooling function. The input can be connected to sensors of type PT1000 and have the sensor mounted so that it senses the temperature on the supply pipe to the coil.

When the temperature exceeds 22°C, the output function is set to heating and when the temperature drops below 18°C, the output is set to cooling. As an alternative, a potential-free contact can be used. When the contact is open the controller works with the heating function and when it is closed, with the cooling function. To ensure satisfactory functioning using sensor, the system must have continuous primary circuit circulation. When the change-over function is not used, the input must be left disconnected.

#### Setpoint

In Occupied mode, the controller operates from a heating setpoint (FS = 22°C), or a cooling setpoint (FS = 24°C) that can be changed using the INCREASE and DECREASE buttons. Pressing on INCREASE increases the current setpoint by 0.5°C with each press up to the max. limit (FS = +3°C). Pressing on DECREASE decreases the current setpoint by 0.5°C with each press down to the min. limit

#### $(FS = -3^{\circ}C).$

Switching between heating and cooling setpoints is done automatically in the controller depending on the heating and cooling requirement.

#### Built-in safety functions

RC-CDO has an input for a condensation detector which prevents condensation. The controller also has frost protection. It prevents frost damages by ensuring that the room temperature does not drop below 8°C when the controller is in Off-mode.

#### Actuator exercise

All actuators are exercised. The exercise takes place at set intervals in hours (FS=23 hours interval). An opening signal is sent to the actuator for as long time as the run time has been configured. Then a closing signal is sent for as long time and the exercise is finished.

#### Configuration and supervision with Argus tool®

RC-CDO is pre-programmed on delivery, but can be configured using Argus tool<sup>®</sup>.

Argus tool<sup>©</sup> is a PC-based program that makes it possible to configure and supervise an installation, and change settings, via a clear and easy user interface.

#### Application examples

![](_page_35_Figure_19.jpeg)

ROOM I

![](_page_35_Picture_21.jpeg)

![](_page_35_Figure_22.jpeg)
## Technical data

Supply voltage Internal consumption Ambient temperature Storage temperature Ambient humidity Protection class Communication Modbus Communication speed Display Built-in temperature sensor Material, casing Weight Colour

## CE

standards

## Inputs

External room sensor

Change-over alt. potential-free contact Occupancy detector IR24-P. Condensation detector alt. window contact

## Outputs

Forced ventilation Valve actuator alt. thermal actuator Valve actuator Thermal actuator Control

Actuator exercise Terminal blocks 18...30 V AC, 50...60 Hz
2.5 VA
0...50°C
-20...+70°C
Max 90% RH
IP20
RS485 (EXOline or Modbus) with automatic detection/change-over
8 bits, 1 or 2 stop bits. Odd, even (FS) or no parity.
9600 bps (not changeable)
LCD with background illumination
NTC type, measuring range 0...50°C, accuracy ±0.5°C at 15...30°C
Polycarbonate, PC
110 g
Cover: Polar white RAL9010
Bottom plate: Light gray

This product conforms with the requirements of European EMC CENELEC EN 61000-6-1 and EN 61000-6-3, and the requirements of European LVD standard IEC 60 730-1. It carries the CE mark.

PT1000-sensor, 0...50°C. Suitable sensors are Argus's TG-R5/PT1000,TG-UH/PT1000 and TG-A1/PT1000. PT1000-sensor, 0...100°C. Suitable sensor is Argus's TG-A1/PT1000. Closing potential-free contact. Suitable occupancy detector is Argus's

Argus's condensation detector KG-A/1 resp. potential-free contact

24 V AC actuator, max 0.5 A 2 outputs 0...10 V DC, max 5 mA 24 V AC, max 2.0 A Heating or cooling

FS = 23 hours interval Lift type for cable cross-section 2.1 mm<sup>2</sup>

## Setpoint settings via Argus tool<sup>®</sup> or in the display

| Basic heating setpoint | 540°C              |
|------------------------|--------------------|
| Basic cooling setpoint | 550°C              |
| Setpoint displacement  | ±010°C (FS = ±3°C) |



## Wiring

| Terminal | Designation | Operation                                                                  |
|----------|-------------|----------------------------------------------------------------------------|
| 10       | G           | Supply voltage 24 V AC                                                     |
| 11       | GO          | Supply voltage 0 V                                                         |
| 12       | D01         | Output for forced ventilation                                              |
| 13-14    |             | No function                                                                |
| 20       | GDO         | 24 V AC out common for DO                                                  |
| 21       | G0          | 0 V common for UO (when 010 V actuator is used)                            |
| 22       |             | No function                                                                |
| 23       | U01         | Output for 010 V valve actuator alt. thermal actuator. Heating or cooling. |
| 24       | U02         | Output for 010 V valve actuator alt. thermal actuator. Heating or cooling. |
| 30       | Al1         | Input for external sensor                                                  |
| 31       | UI1         | Input for change-over sensor alt. potential-free contact                   |
| 32       | DI1         | Input for occupancy detector                                               |
| 33       | DI2/CI      | Input for Argus's condensation detector KG-A/1 alt. window contact         |
| 40       | +C          | 24 V DC out common for UI and DI                                           |
| 41       | AGnd        | Analogue ground                                                            |
| 42       | А           | RU-Bus A                                                                   |
| 43       | В           | RU-Bus B                                                                   |

Dimensions



mm

## Product documentation

| Document                              | Туре                                                              |  |
|---------------------------------------|-------------------------------------------------------------------|--|
| Argus Midi Manual                     | Manual for the controllers from the Argus Midi series             |  |
| Installation instruction Argus RC-CDO | Installation instruction for RC-CDO                               |  |
| Product sheet TG-R4/PT1000, TG-R5/PT  | nformation about room sensors, outdoor sensors and                |  |
| Product sheet TG-UH/PT                | strap-on sensors suitable for RL-LDU                              |  |
| Product sheet TG-A1/PT                |                                                                   |  |
| Product sheet IR24-P                  | Information about occupancy detector suitable for RC-CDO          |  |
| Instruction IR24-P                    | Instruction for IR24-P                                            |  |
| Product sheet KG-A/1                  | Information about condensation detector for the Argus controllers |  |



# Argus-IR24-P Presence detector



IR24-P is a presence detector designed for automatic ventilation control of HVAC systems.

- Power supply 24 V AC or DC
- Intended for wall or ceiling mounting
- Unobtrusive design
- Potentialfree, changeover relay
- Both relay on-delay and/or relay off-delay, can
- be individually set

#### Function

The IR24-P is a presence detector designed for automatic ventilation control of HVAC systems. It saves money and gives higher comfort in premises which require forced ventilation for shorter periods of time, such as conference rooms, assembly-halls etc. The unit provides a changeover relay signal output for start/stop of fan or similar equipment. It can be wall or corner mounted with 110°, 15m detection range.

#### Range adjustments

In order to suit different rooms or areas, the detection range of IR24-P can be adjusted by changing the direction of the sensor. To change the sensor direction, release the screw on the mounting bracket and then carefully move the sensor to the direction desired.

#### On / Off Delay

The ON and OFF delays are designed to provide smarter energy management of HVAC systems. ON delay is the time given to the sensor to certify the occupancy, before it activates the output relay. OFF delay is the time that the relay is activated after the last detection. Both ON and OFF delays can be easily set by placing the jumper head on the corresponding pins as following.

|     | А       | В       | С       | E       | E       | F       |
|-----|---------|---------|---------|---------|---------|---------|
| ON  | 0 sec.  | 10 sec. | 30 sec. | 1 min.  | 5 min   | 10 min. |
| OFF | 10 sec. | 1 min.  | 5 min.  | 10 min. | 20 min. | 30 min. |





#### Technical data

- Infrared sensor Dual element
- Power supply 24 ± 2 V AC/DC
- Detection range 15 x 15 m at 25°C
- Output relay 24 V DC, 0.2 A max.
- Consumption 5 mA @24 V AC
- Mounting height 1.8...3.6 m
- Mounting bracket MB-99
- Detectable speed 0.1...3.0 m/sec.
- RFI immunity Av. 20 V/m (10...1,000 MHz)
- Ambient temperature -20°C...50°C
- Ambient humidity 95% RH max.
- Dimension 112 x 66 x 45 mm



## Operation

## A. Standby

After the warm up time expires, the sensor enters into standby mode. The detector will check whether both delays are properly set. If not, the green LED will blink to indicate.

## B. Relay ON Delay

Relay ON delay is the time given to sensor to verify true occupancy before activating the relay output. Any further detection during ON delay will NOT reset the timer.

## C. 1-minute Waiting

When Relay ON delay expires, the sensor enters into a 1-minute waiting time. If no detection occurs within 1 minute, the sensor will return to standby mode. If any detection occurs, then relay output will be activated and Relay OFF delay will be started.

#### D. Relay OFF Delay

Relay OFF delay is the time of relay activating. Every detection during this period will reset the timer



#### Installation and Wiring

N.B. Do not install where the detector is exposed to direct sunlight or directly above strong sources of heat. Make sure the detection area does not have any obstruction (plants, large pieces of furniture, curtains etc.) which may block the detection.

Installation (see also picture beside)

- Mount the base of mounting bracket on the selected position. Lead the cable through the access tunnel of mounting bracket or through the knockout openings
- 2. Open the front cover by loosening the locking screw at the bottom. Lead the cable into the unit and assemble the mounting bracket with the unit.

Connect the cable to the corresponding terminals according to the instructions below.



24 V AC/DC (non-polarity)

(NC-COM-NO: Outputs for On-Off control of fan coil operation.)

4. Replace the front cover and then proceed with the walk test.

## Walk Test

Apply power supply and allows 25 seconds for sensor to warm up. The green LED will blink during warm up period. Walk across the detection zones (invisible) at normal speed. The red LED will blink whenever the sensor detects the motion.





# Argus-IR24-PC Presence detector



IR24-P is a presence detector designed for automatic ventilation control of HVAC systems.

- Power supply 24 V AC/DC
- Intended for ceiling mounting
- 360° detection
- · Individually settable On and Off delays
- Change-over output
- Unobtrusive design

IR24-PC is a 360° presence detector for automatic ventilation control of HVAC systems. It uses infrared light. The detector has a change-over output for activation/deactivation of a fan coil controller.

#### **Detection pattern**



#### On/Off delays

IR24-PC has individually settable On and Off delays. The delays are designed to provide better energy management of HVAC systems. The On delay is the time given to the sensor to certify the occupancy before it activates the fan coil controller. The Off delay is the operating time for the fan coil after the last detection. The On and Off delays are set by placing the jumper head on the corresponding pins according to the table and figure below.

|     | А  | В  | С   | E   | E    | F    |
|-----|----|----|-----|-----|------|------|
| ON  | 0  | 10 | 30  | 60  | 300  | 600  |
| OFF | 10 | 60 | 300 | 600 | 1200 | 1800 |

(Values in seconds)

|   | ON |   | OF | F |
|---|----|---|----|---|
| А |    | A |    |   |
| В |    | B |    |   |
| Ċ |    | Ċ |    |   |
| D |    | D | •  |   |
| Е |    | E |    |   |
| F |    | F |    |   |
|   |    |   |    |   |

#### Installation

Loosen the screw and remove the cover. Carefully lift out the electronics cassette by bending the plastic clips outwards. Lead the cable into the bottom part. Mount the bottom part on the ceiling. Replace the electronics

cassette and connect the cable to the corresponding terminals (see the section Wiring on the next page). Finally, replace the front cover.

Note: Do not touch the infrared sensor in the middle of the electronics cassette.

#### Testing the function

To test the function of the detector, apply power supply and wait for the detector to warm up (~25 sec.). The LED will blink (long and short) during the warm-up period. Ensure that the jumper head connectors of the

On and Off delays are placed in the "A" position (the shortest time). Walk across the detection zones at normal speed. The LED will be lit when the sensor detects the motion.

Note: The LED will blink if a jumper head connector is not properly placed.



## Technical data

| Power supply      | 24 +/- 2 V AC/DC                   |
|-------------------|------------------------------------|
| Power consumption | 15 mA                              |
| Output            | 200 mA, 24 V DC, change-over relay |
| Ambient humidity  | Max. 95% RH                        |
| Temperature range | -20°C+50°C                         |
| Protection class  | IP20                               |
| Mounting          | Ceiling mounting                   |
| Mounting height   | 2.44.2 m                           |
| Infrared sensor   | Dual element                       |
| Detection range   | Height x 2.5 at 25°C               |
| On delay          | 0, 10, 30, 60, 300 or 600 seconds  |
|                   | (selectable)                       |
| Off delay         | 10, 60, 300, 600, 1200 or 1800     |
|                   | seconds (selectable)               |
|                   |                                    |

## Wiring



## NC-COM-NO: Output for On-Off control.

### Dimensions



## Product documentation

| Document            | Туре                    |
|---------------------|-------------------------|
| Instruction IR24-PC | Instruction for IR24-PC |





## Compact or universal air volume control with Belimo.

## The cost-efficient way to controlled room climate.

## Human health

well-being and work performance are crucially influenced by room climate. Belimo room and system solutions – a complete range of products for cost-efficient motorisation and control of zones and single rooms in the comfort zone, industry, trade and sensitive working areas – are proven in countless installations all over the world.

# VAV-Compact – efficient room control with a single unit

Actuator, controller and sensor in one unit - VAV-Compact provides an economical solution for variable and constant air volume control systems in office buildings, hotels, hospitals, etc. Special rotary actuators with a torque of 5, 10 or 20 Nm and linear actuators with 150 Nm can be supplied for a wide range of VAV/CAV unit sizes and types. VAV-Compact controllers can be controlled conventionally or via the Belimo MP-Bus®. The MP types can be integrated in a higher-level system – together with one sensor per device - either via a DDC controller with an MP interface or by means of a gateway. The fans are incorporated in an MP-Bus® based Fan Optimiser to facilitate cost-optimised control according to demand.

## VAV-Universal – flexibility in problematic environments

The ready-to-connect VAV-Universal range encompasses rotary and safety actuators as well as controllers with dynamic and static pressure sensors. These devices can be finely tuned to exacting requirements in industry, trade and public buildings. Digital, self-adaptive VRP-M controllers interact with fast-running actuators in laboratories or production areas with a severely polluted room atmosphere to assure an instant supply of fresh air. Depending on what is chosen, the control systems can be integrated in a higher-level fieldbus and equipped - directly or over the MP-Bus® – with the Belimo Fan Optimiser to cut fan energy consumption by up to 50%.



## Increased convenience a better working atmosphere, optimum energy efficiency.

## VAV-Compact for convenient solutions

- Individual room comfort
- Wide range of potential applications
- Adjustable to each application
- Demand-based single-room application
- Operation with Fan Optimiser



VAV

VAV

## VAV-Universal with VRP-M controller and fast-runing actuators for sensitive working areas Instant pure air

- Extraction of polluted air
- Ready-to-connect control system for maximum safety
- Integration in MP-Bus® network
- Volumetric flow or pressure control

## VAV-Compact with bus connection

Intelligent simplicity

- System connection to DDC controller with MP interface via MP-Bus<sup>®</sup>
- Integration in higher-level systems such as LonWorks<sup>®</sup>, Konnex, Ethernet TCP/IP, Profibus DP, etc. via MP gateway
- Convenient, cost-efficient wiring
- Maximum flexibility in new, retrofitted, converted or renovated buildings

# VAV-Compact with Belimo Fan Optimiser for reduced energy consumption

Up to 50% fan energy saving

- Optimised consumption and operating costs
- Reduced flow noise thanks to lower supply pressure in the air duct system
- Reduced wiring expenses thanks to MP-Bus<sup>®</sup> network







| Function                                   | VAV-Compact              |                        |                                                             | VAV-Universal                                                                                                                                                       |                                                                                                                                |
|--------------------------------------------|--------------------------|------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                            | MODBUS types             | LON types              | MP types                                                    | VRP-M system solutions                                                                                                                                              | Universal program                                                                                                              |
| Sensors<br>Controller                      | Modbus                   | LONMARK*               | MP2-BUS<br>LMV-D3-MP<br>NMV-D3-MP                           | VFP VFD3<br>MP2-BUS'<br>VRP-M                                                                                                                                       | VRD3 VRP<br>VRP.                                                                                                               |
| Actuators                                  | LMV-D3 MOD<br>NMV-D3 MOD | LMV-D3LON<br>NMV-D3LON | LHV-D3-MP                                                   | LMQ24A-SRV-ST<br>NMQ24A-SRV-ST<br>NM24A-V-ST<br>SF24A-V-ST with<br>emergency control<br>function                                                                    | LM24A-V<br>NM24A-V<br>SM24A-V<br>LF24-V with<br>emergency<br>control function<br>SF24A-V with<br>emergency<br>control function |
| Bus integration                            |                          |                        | Into<br>Gate<br>LonV<br>Konr<br>Mod<br>UK24<br>BACr<br>UK24 | PORBUS<br>field bus systems via MP-<br>way<br>Vorks <sup>®</sup> : Gateway UK24LON<br>ex: Gateway UK24EIB<br>bus RTU: Gateway<br>4MOD<br>het MS/TP: Gateway<br>4BAC |                                                                                                                                |
| Ventilator optimisa-<br>tion<br>via MP bus |                          |                        |                                                             | <b>MP2</b> *BUS*<br>Fan Optimiser<br>COU24-A-MP                                                                                                                     |                                                                                                                                |
| Service tool                               |                          | and the second         | ZTH-GEN                                                     | -1                                                                                                                                                                  |                                                                                                                                |
| Parameterisation and<br>Service software   |                          |                        |                                                             | PC-Tool MFT-P                                                                                                                                                       |                                                                                                                                |
| Room controller                            |                          |                        |                                                             | CR2<br>CRA                                                                                                                                                          | 4<br>24                                                                                                                        |
| Positioner                                 |                          |                        | Ø                                                           | CRP24                                                                                                                                                               | 5G                                                                                                                             |

Information: Documents to VAV-Compact LON version, VRP-M system solution, VAV-Universal, single room controllers CR24, CRA24, CRP24, Fan Opti-miser COU24-A-MP and Tools and Interfaces are available as separate documents.



## VAV-Compact Functions

## Master / slave connection



Principle:

- 1. A reference signal, e.g. from a room temperature controller, is connected to the master input.  $\dot{V}_{min}$  and  $\dot{V}_{max}$  are set on the master controller.
- 2. The volumetric flow actual value signal from the master acts as a reference signal for the slave controller. The master is installed on the supply or exhaust air side, depending on the application. See "Determination of the master controller".

For connection diagram, see page 39-42



Determination of the master controller If both units have:

- Non-identical  $\dot{V}_{\text{nom}}$  settings, the controller with the lower  $_{\text{nom}}.$
- Identical  $\dot{V}_{nom}$  settings, the controller with the higher air olume setting acts as master

## • Positive pressure in the room

Master: Supply air unit Slave: Exhaust air unit

#### • Negative pressure in the room

Master: Exhaust air unit Slave: Supply air unit

## Room pressure ratio

In a master / slave connection, any changes in the air system of the master (supply pressure too low, e.g. due to a pressure control fault) are detected and reported to the slave. This guarantees an equal percentage ratio of supply air to exhaust air.

In a master / slave configuration, only one controller can act as master. However, one master controller can control several parallel slave controllers.

When are master / slave connections used?

- In systems with air volume controllers in the supply and exhaust air that are required to work sequentially
- When an equal percentage ratio of supply air to exhaust air is specified.

## Operating volumetric flow settings

The  $\dot{V}_{max}$ - and  $\dot{V}_{min}$  values used for the required volumetric flow are set on the master and transferred to the slave by means of a reference signal.

## CAV application

In constant air volume applications, operating mode control (CLOSED /  $\!\!\!$ 

 $\dot{V}_{min}$  etc.) is only set on the master controller. Slave setting if the room pressure ratio is balanced The  $\dot{V}_{min}$  setting on the slave is always 0%. If the room pressure ratio is 1:1 and all controllers are the same size, the slave controller is set to  $\dot{V}_{max}$  100% /  $\dot{V}_{min}$  0%. Slave setting if the room pressure ratio is unbalanced The  $\dot{V}_{min}$  setting on the slave is always 0%. Setting with % scale on the ZTH-GEN hand-operated

device The ratio of slave volume to master volume is set as fol-

| IOWS WITH          | U | ie vmax value on the slave controller:                               |
|--------------------|---|----------------------------------------------------------------------|
| Nu cou             |   | Ý <sub>max</sub> s · Ý                                               |
|                    | = | 100                                                                  |
| V max 3%           |   | Ý <sub>max</sub> M·Ý                                                 |
|                    |   | nom S                                                                |
| ₩max S%            | = | $\dot{V}_{\text{max}}$ value that must be set on the controller in % |
| ₩ <sub>nom</sub> M | = | Nominal volume of the master unit in $m^3/h$                         |
| V <sub>max</sub> м | = | Maximum volume of the master unit in $m^3/h$                         |
| <b>V</b> nom S     | = | Nominal volume of the slave unit in $m^3/h$                          |
| Vmax S             | = | Maximum volume of the slave unit in m <sup>3</sup> /h                |

#### Setting with PC-Tool / ZTH-GEN

These two setting tools can be used to enter the volumetric flow ratio directly in  $m^3/$  h, II/s or cfm, i.e. there is no need to calculate the setting ratio.

#### Example

- Required: Positive pressure in the room with 20% excess air
- Supply air unit:  $\dot{V}_{nom}$  1600 m<sup>3</sup>/h /  $\dot{V}_{max}$  1500 m<sup>3</sup>/h
- Exhaust air unit:  $\dot{V}_{nom}$  2400 m<sup>3</sup>/h /  $\dot{V}_{max}$  1200 m<sup>3</sup>/h

### Find: $\dot{V}_{max}$ setting of the slave controller

53% = <u>1200 · 1600</u>

$$3\% = \frac{1500 \cdot 2400}{1500 \cdot 2400} \cdot 100$$



## VAV-Compact Functions

#### Parallel connection



#### Principle:

The reference signal of the temperature controller is connected in a parallel circuit with the reference value inputs of the supply and exhaust air controllers. The operating volumetric flows  $\dot{v}_{max}$  and  $\dot{v}_{min}$  are set on both controllers.

For connection diagram, see page 39-42



#### Room pressure ratio

In a parallel connection, the two VAV units are operated independently of one another with a common reference signal. The operating volumetric flows of the supply and exhaust air units must be set according to the required room pressure ratio.

The supply and exhaust air controllers work independently of one another, i.e. if a fault occurs in the supply or exhaust air system, the room pressure ratio is impaired for technical reasons. In the worst case, the unit tolerances may be accumulated. This circumstance must be taken into account by the project planning engineer.

#### When are parallel connections used?

- If air volume controllers operate with parallel supply and exhaust air (controlled by a common reference variable)
- If the supply and exhaust air devices have different sizes and different minimum and maximum volumetric flow settings
- If constant differential control is active between the supply and exhaust air
- In systems with several supply and exhaust air devices
- In circulating air systems for airtight rooms.

#### Operating volumetric flow settings

The  $\dot{v}_{max}$  and  $\dot{v}_{min}$  values used for the required volumetric flow must be set on each VAV controller.

#### **CAV** application

In constant air volume applications, operating mode control (CLOSED /  $\dot{v}_{min}$  etc.) is set on both controllers.

#### Setting if the room pressure ratio is balanced

Owing to the proportional assignment of the reference signal to the value ranges for  $\dot{V}_{max}$  and  $\dot{V}_{min}$ , it is possible to operate VAV units with different nominal widths and differentiated ranges parallel to one another.

#### Setting if the room pressure ratio is unbalanced

The operating volumetric flows of the supply and exhaust air units must be set according to the difference:

- Positive pressure ratio in the room Supply air volume > exhaust air volume
- Negative pressure ratio in the room Exhaust air volume > supply air volume



## Single-duct systems

Function diagram



## **Brief Description**

Control solution for CAV single-room application CAV single-duct system, occupancy-controlled Standalone operation or integrated in a building automation system (I/O integration)

#### Functions

The CAV controller is controlled by means of the motion detector in two modes on the basis of room occupancy  $\dot{V}$  min ...  $\dot{V}$ max:

- Room unoccupied: constant air volume  $\dot{v}_{\text{min}}$
- Room occupied: constant air volume  $\dot{V}_{\text{max}}$

#### Motion detector

With switching output for low switching capacity (load 0.24 mA)

#### VAV-Compact control device

#### ..MV-D3-MP

VAV-Compact control device for supply air, exhaust air or mixing units, comprising a sensor, VAV controller and actuator for pressure-independent air volume controls.

• Damper position feedback controlled via the MP-Bus for demand based fan optimisation.

#### IRC-VAV CAV room solution with motion detector



CAV single-duct system, occupancy-controlled

#### Wiring diagram



#### Notes

- Connection and terminal designations of the motion detector in accordance with the manufacturer's specification
- Mode setting on the CAV controller: 0 ... 10 V oder 2 ... 10 V



Single-duct systems



## **Brief Description**

Control solution for VAV single-room application Stand-alone operation or integrated in a building automation system (I/O integration)

#### Functions

The 0 ... 10 V V single-room or DDC controller controls the VAV controller with vaiable air volume in the range from  $\dot{V}_{min}$  ...  $\dot{V}_{max}$ , depending on the room cooling needs.

## Single-room or DDC controller

With The 0 ... 10 V output single (cooling sequence). Controller functions in accordance with the manufacturer's specification.

## VAV-Compact control device

#### ..MV-D3-MP

VAV-Compact control device for supply air, exhaust air or mixing units, comprising a sensor, VAV controller and actuator for pressure-independent air volume controls.

• Damper position controlled via the MP-Bus for demand based fan optimisation.

## IRC-VAV CAV room solution with 0....10V control



## Anschlussschema



#### Notes

- Connection and terminal designations in accordance with the controller manufacturer's specification
- Mode setting on the VAV controller: 0 ... 10 V



#### Single-duct systems



IRC-VAV VAV room solution with CR 24 room controller



#### VAV singleduct system, room tempreture-controlled

Note

For technical data and a detailed description of functions, see CR24 product information.

## Wiring diagram



#### Notes

- Further VAV applications such as boost (fast heat up), night cool down (air heated with water or electrically), night cooling, combination available with chilled ceiling.
- Mode setting for VAV controller for this application: 2 ... 10 V

## **Brief description**

Control solution for VAV single-room application, VAV single-duct system, room temperature-controlled, Stand-alone operation or integrated in a building automation system (I/O integration)

## **Functions**

The CR24-B1 single-room controller controls the connected VAV controllers with a variable air volume in the range from  $\dot{v}_{min} \dots \dot{v}_{max}$ , depending on the room cooling needs. Other functions can be optionally connected (e.g. with a motion detector): energy hold off, standby, etc.

## Room temperature controller

CR24-B1 (automatic) CR24-A1 Room temperature controller (15 ... 36°C) with an integrated or external temperature sensor

- Mode selection with a pushbutton and three LEDs: AUTO, ECO (reduced room temperature for standby or night operation) and MAX (flushing operation with 15' timer)
- Room protection function (frost / excess temperature)
- Inputs for energy hold off, standby operation, external temperature sensor, summer / winter compensation
- VAV system output
- Self-resetting start-up and service function
- Tool connection for diagnostics, settings and trend recordings

VAV-Compact control device ..MV-D3-MP, VAV-Compact control device for supply air, exhaust air or mixing units, comprising a sensor, VAV controller and actuator for pressure-independent air volume controls.

• Damper position controlled via the MP-Bus for demand based fan optimisation.

#### Input and output assignment

| Functions             | Description                                             | Assignment |
|-----------------------|---------------------------------------------------------|------------|
| VAV                   | VAV system output (0) 2 10 V                            | Output ao1 |
| Optional<br>functions | Description                                             | Assignment |
| EHO                   | Energy hold off (window)                                | Input di1  |
| Sensor                | External temperature sensor NTC 5K                      | Input ai1  |
| Shift                 | External shift 0 10 V<br>(Summer / Winter compensation) | Input ai2  |

#### Note

Terminal designations in accordance with the Belimo final controlling element.

#### Configuration, settings

DIP switches



Setpoint WH range: 15 ... 36 °C



#### **Dual-duct systems**



#### IRC-VAV VAV dual-duct solution with CR 24 room controller



#### Note

For technical data and a detailed description of functions, see CR24 product information.

#### Wiring diagram



#### Note

- Terminal descriptions correspond to the Belimo actuator
- connection.Mode setting for VAV controller for this application: 2 ... 10 V

#### Control solution for VAV single-room application

VAV dual-duct system, room temperature-controlled Stand-alone operation or integrated in a building automation system (I/O integration)

#### Functions

The two air volume controllers mix the hot and cold air supplied by the dual-duct air conditioning system to obtain the condition requested by the CR24-B1 room temperature controller. The constant air volume (CAV) controller for the hot air adjusts to the set Vmax volume for heating. The variable air volume (VAV) controller for the cold air adds the variable amount of cold air requested by the room temperature controller. If cooling needs exceed the hot air volume, the hot-air part is shut off and only cold air is supplied.

**Optional:** The cold-air part can be shut off by means of a switching contact at input d1.

#### Room temperature controller

CR24-B1(automatic) CR24-A1

Room temperature controller (15 ... 36°C) with an integrated or external temperature sensor

- Mode selection with a pushbutton and three LEDs: AUTO, ECO (reduced room temperature for standby or night operation) and MAX (flushing operation with 15' timer)
- Room protection function (frost / excess temperature)
- Inputs for cold air shut-off, external temperature sensor, summer / winter compensation
- VAV system output
- Self-resetting start-up and service function
- Tool connection for diagnostics, settings and trend recordings

#### VAV-Compact control device .. MV-D3-MP

VAV-Compact control device for supply air, exhaust air or mixing units, comprising a sensor, VAV controller and actuator for pressure-independent air volume controls.

#### Input and output assignment

| Functions             | Description                                             | Assignment |
|-----------------------|---------------------------------------------------------|------------|
| VAV                   | VAV system output (0) 2 10 V                            | Output ao1 |
| Optional<br>functions | Description                                             | Assignment |
| Shut-off CA           | Cold air shit-off                                       | Input di1  |
| Sensor                | External temperature sensor NTC 5K                      | Input ai1  |
| Shift                 | External shift 0 10 V<br>(Summer / Winter compensation) | Input ai2  |

#### Configuration, settings

DIP switches

| 1 2 | 1 | P-Band | normal   | wide        |
|-----|---|--------|----------|-------------|
|     | 2 | di2    | Stand by | Change over |

Setpoint WH range: 15 ... 36 °C





| Brief | desi | crint | tion |
|-------|------|-------|------|

| riet description               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application                    | The digital VAV-Compact has PI control characteristics and is used for pressure-independent control of VAV units in the comfort zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pressure measurement           | The integrated maintenance-free Belimo D3 differential pressure sensor is also suitable for very small volumetric flows. It is for this reason that it covers versatile applications in the comfort zone, e.g. in residential construction, offices, hospitals, hotels, cruise ships, etc.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Actuator                       | Three versions available, depending on the size of the VAV unit: 5 / 10 / 20 Nm.<br>– Rotary actuator, depending on the size<br>– Linear actuator 150 N with 100, 200 or 300 mm linear movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control function               | VAV-CAV or Open-Loop operation for integration in an external VAV control loop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Feedback                       | Damper position for fan optimiser systems, current volumetric flow or pressure value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VAV – variable volumetric flow | For variable volumetric flow applications with a modulating reference variable, e.g. room temperature controller, direct digital control or bus system, it enables demand-related, energy-saving ventilation of individual rooms or zones. The operating range $\dot{V}$ min $\dot{V}$ max can be connected via selectable mode.<br>The following are available: DC 2 10V / 0 10V / adjustable range / bus operation                                                                                                                                                                                                                                                                          |
| CAV – constant volumetric flow | For constant volumetric flow applications, e.g. in step mode, controlled by means of a switch. The following operating modes can be selected from: CLOSED / $\dot{V}_{min}$ / ( $\dot{V}_{mid}$ ) / $\dot{V}_{max}$ / OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Bus function                   | Up to eight Belimo MP devices (VAV / damper actuator / valve actuator) can be connected<br>together over the MP-Bus and integrated into the following systems:<br>- LONWORKS <sup>®</sup> applications with Belimo UK24LON interface<br>- EIB Konnex applications with Belimo UK24EIB interface<br>- MODBUS RTU applications with Belimo UK24MOD interface<br>- BACnet applications with Belimo UK24BAC interface<br>- DDC controller with integrated MP-Bus protocol<br>- Fan optimiser applications with optimiser COU24-A-MP<br>A sensor (010V or passive), e.g. a temperature sensor or a switch, can optionally be<br>integrated into the higher-level DDC or bus system via the MP-Bus. |
| Operating and service devices  | Belimo PC-Tool or service tool ZTH-GEN, can be plugged into the VAV-Compact (PP connection) or via MP-Bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Assembly and connection        | The VAV-Compact, which is assembled on the unit by the OEM, is connected using the prefabricated connecting cable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test function / test display   | The VAV-Compact features two LEDs with a functional readiness display for commissioning and functional checking. Extended information with ZTH-GEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OEM factory settings           | The VAV-Compact is mounted on the VAV unit by the unit manufacturer, who adjusts and tests it according to the application. The VAV-Compact is sold exclusively via the OEM channel for this reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Type overview Туре Torque Power consumption Dimensioning Weight LMV-D3-MP 5 Nm 2 W 4 VA (max. 8 A @ 5 ms) Approx. 500 g NMV-D3-MP 10 Nm 3 W 5 VA (max. 8 A @ 5 ms) Approx. 700 g 3 W SMV-D3-MP 20 Nm 5.5 VA (max. 8 A @ 5 ms) Approx. 830 g LHV-D3-MP 150 N 2.5 W 4.5 VA (max. 8 A @ 5 ms) Approx. 550 g



| Technical data                                              |                                                                                                                                                                         |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supply                                                      |                                                                                                                                                                         |
| Nominal voltage                                             | AC 24V, 50/60 Hz, DC 24 V                                                                                                                                               |
| Operating range                                             | AC 19.2 28.8V, DC 21.6 28.8V                                                                                                                                            |
| Differential pressure sensor                                |                                                                                                                                                                         |
| Type, principle of operation                                | Belimo D3 sensor, dynamic response                                                                                                                                      |
| Operating range                                             | 0 600 Pa                                                                                                                                                                |
| Overload capability                                         | ±3000 Pa                                                                                                                                                                |
| Installation position                                       | Any, no reset necessary                                                                                                                                                 |
| Materials in contact with medium                            | Glass, epoxy resin, PA, TPE                                                                                                                                             |
| Control function                                            | - VAV-CAV                                                                                                                                                               |
|                                                             | - Open-loop operation                                                                                                                                                   |
| Adjustment values                                           |                                                                                                                                                                         |
| Vnom                                                        | OEM-specific nominal volumetric flow setting, suitable for the VAV unit                                                                                                 |
| Δp @ Vnom                                                   | 50 450 Pa                                                                                                                                                               |
| Vmax                                                        | 20 100% of Vnom                                                                                                                                                         |
| Vmin                                                        | 0 100% of V <sub>nom</sub>                                                                                                                                              |
| Vmid                                                        | 50% of V <sub>min</sub> to V <sub>max</sub>                                                                                                                             |
| Classic control                                             |                                                                                                                                                                         |
| VAV mode for reference value input Y<br>(Connection 3)      | <ul> <li>DC 2 10V / (4 20 mA with 500 Ω resistance)</li> <li>DC 0 10V / (0 20 mA with 500 Ω resistance)</li> <li>Adjustable DC 0 10V</li> </ul>                         |
| Mode for actual value signal U5                             | - DC 2 10V                                                                                                                                                              |
| (Connection 5)                                              | - DC 0 10V } max. 0.5 mA                                                                                                                                                |
|                                                             | - Adjustable: volumetric flow, damper position or differential pressure J                                                                                               |
| CAV operating modes (constant volumetric flow)              | CLOSED / Vmin / (Vmid ^) / Vmax / OPEN ^ (^ only with AC 24V supply)                                                                                                    |
| MP-Bus function                                             |                                                                                                                                                                         |
| Address in bus operation                                    | MP1 8 (classic operation: PP)                                                                                                                                           |
| LONWORKS <sup>®</sup> / EIB-Konnex / Modbus RTU /<br>BACnet | With BELIMO Interface UK24LON / UK24EIB / UK24MOD / UK24BAC<br>1 8 BELIMO MP devices (VAV / damper actuator / valve)                                                    |
| DDC controller                                              | DDC controllers/programmable controller with an integrated MP interface from various<br>manufacturers                                                                   |
| Fan optimiser (fan control)                                 | With BELIMO Fan Optimiser COU24-A-MP                                                                                                                                    |
| Sensor integration                                          | Passive (Pt1000, Ni1000, etc.) and active sensors (010V), e.g. temperature, humidity 2-point signal (switching capacity 16 mA @ 24V), e.g. switches, occupancy switches |
| Operating and service                                       | Pluggable / PC-Tool (V3.6 or higher) / service tool ZTH-GEN                                                                                                             |
| Communication                                               | PP/MP-Bus, max. DC 15V, 1200 baud                                                                                                                                       |
| Push-button                                                 | Adaption / addressing                                                                                                                                                   |
| LED display                                                 | - 24V supply<br>- Status / bus function                                                                                                                                 |
| Actuator                                                    | Brushless, non-blocking actuator with power-save mode                                                                                                                   |
| Direction of rotation                                       | ccw / cw or ↑ / ↓                                                                                                                                                       |
| Adaption                                                    | Capture of setting range and resolution to control range                                                                                                                |
| Gear disengagement                                          | Push-button self-resetting without functional impairment                                                                                                                |
| Sound power level                                           | Max. 35 dB (A), SMV-D3-MP max. 45 dB (A)                                                                                                                                |
| Actuator - rotating                                         |                                                                                                                                                                         |
| Angle of rotation                                           | 95°⊄, adjustable mechanical or electronic limiting                                                                                                                      |
| Position indication                                         | Mechanical with pointer                                                                                                                                                 |
| Spindle driver                                              | <ul> <li>Clamp, spindle round 10 20 mm / spindle square 8 16 mm</li> <li>Form fit in various versions, e.g. 8 x 8 mm</li> </ul>                                         |
| Actuator – linear                                           |                                                                                                                                                                         |
| Stroke                                                      | 100, 200 or 300 mm, adjustable mechanical or electronic limiting                                                                                                        |
| Connection                                                  | Cable, 4 x 0.75 mm <sup>2</sup>                                                                                                                                         |
| Safety                                                      | · · · ·                                                                                                                                                                 |
| Protection class                                            | III Safety extra-low voltage                                                                                                                                            |
| Degree of protection                                        | ,                                                                                                                                                                       |
| Electromagnetic compatibility                               | CE according to 89/336/EEC                                                                                                                                              |
|                                                             | <u> </u>                                                                                                                                                                |



| Technical data            | (continued)                                                |
|---------------------------|------------------------------------------------------------|
| Safety                    |                                                            |
| Mode of operation         | Type 1 (in acc. with EN 60730-1)                           |
| Rated impulse voltage     | 0.5 kV (in accordance with EN 60730-1)                     |
| Control pollution degree  | 2 (in accordance with EN 60730-1)                          |
| Ambient temperature       | 0 +50°C                                                    |
| Non-operating temperature | -20 +80°C                                                  |
| Ambient humidity          | 5 95% r.h., non-condensing (in accordance with EN 60730-1) |
| Maintenance               | Maintenance-free                                           |

#### Connection

Connecting cable

The connection is made using the connecting cable mounted to the VAV-Compact device.

#### Note

- Supply via safety isolating transformer!
- Connections 1 and 2 (AC/DC 24V) and 5 (MP signal) must be routed to accessible terminals (room temperature controller, floor distributor, control cabinet, etc.) in order to enable access with the tool for diagnostic and service work.

| A THE REAL PROPERTY AND A THE | No. | Designation  | Wire colour | Functi          | ion                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-------------|-----------------|-----------------------------------|
| Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 1 |              | black       | 1-              | AC/DC 24V                         |
| · · AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2   | + ~          | red         | ~ +             | ∫ supply                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3   | Y            | white       | Refere          | ence signal VAV/CAV               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5   | <b>→</b> _ U | orange      | – Actu<br>– MP- | al value signal<br>Bus connection |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |              |             |                 |                                   |

## VAV – Variable operation Vmin...Vmax

Wiring diagrams

## Example 1:

VAV with analogue reference signal



#### Example 2:

VAV with shut-off (CLOSE), 2 ... 10V mode



#### Example 3:

VAV with analogue reference signal supply/exhaust air in parallel operation



# Example 4:

VAV with analogue reference signal, in Master/Slave operation







Contact closed, function active

Contact closed, function active, only in 2 ... 10 V mode

Contact open

\* Not available with DC 24 V supply



## MP-Bus operation – VAV / CAV operation

## Connecting cable

Wiring diagrams

The connection to the MP-Bus is made using the connecting cable mounted to the VAC-Compact device.

#### Note

 Supply via safety isolating transformer!
 Connections 1 and 2 (AC/DC 24V) and 5 (MP signal) must be routed to accessible terminals (room temperature controller, floor distributor, control cabinet, etc.) in order to enable access with the tools for diagnostic and service work.





orange

U

#### Control via MP-Bus

⊥ ~ AC 24 V

For detailed information, see section «MP-Bus integration»

5

#### MP-Bus control with integrated switch

MP-Bus connection

For detailed information on sensor integration, see section «MP-Bus integration»



#### Note

- For further information about the connection, override controls, MP-Bus cables, etc., see section «MP-Bus integration»
- This is a connection description. Depending on the application, the terminal allocation may vary. The connection and commissioning must be carried out by trained personnel.

Dimensioning of supply and connecting cable

| – + DC 24 V    | MP                 |                  |
|----------------|--------------------|------------------|
|                |                    |                  |
|                | MP address:<br>1 8 |                  |
| L ~ Y U<br>- + | MV-D3-MP           | CHARACTER STREET |
|                |                    |                  |

| General                                                  | In addition to the actual wire sizing, attention must also be paid to the surrounding area and the cable routing. Signal cables must not be laid in the vicinity of load cables, objects liable to cause EMC interference etc. if possible. Paired or layer stranded cables improve immunity to interference.                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 V supply, dimensioning and cabling                    | <ul> <li>The dimensioning and installation of the AC 24V supply, the fuse protection and the cables are dependent on the total operated load and local regulations. Account must be taken of the following performance data, including the starting currents of the actuators:</li> <li>Dimensioning values VAV-Compact controller, see Technical data</li> <li>Dimensioning values of further controlling elements etc. can be found in the current data sheets and product information</li> <li>Other devices which are intended to be connected to the same 24 V supply</li> <li>Reserve capacity for subsequent expansion, if planned.</li> </ul> |
| MP-Bus integration – supply, dimensioning<br>and cabling | See S4-VAV-Compact D3, MP-Bus integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |





# VAV-Compact MOD

A pressure sensor, digital VAV controller and damper actuator all in one, providing a VAV-Compact solution with a communications capability for pressure-independent VAV systems in the comfort zone

- Control function: VAV
- Communication via Modbus RTU (RS-485)
- Conversion of sensor signals
- Diagnostic socket for operating devices

#### **Brief description**

| Application                    | The digital VAV-Compact has PI control characteristics and is used for pressure-independent control of VAV units in the comfort zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode of operation              | The actuator is fitted with an integrated interface for Modbus RTU, receives its digital positioning signal from the superordinate Modbus-Master and returns the current status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Converter for sensors          | Connection option for a sensor (passive or active sensor or switching contact). In this way, the analogue sensor signal can be easily digitised and passed along to Modbus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Parameterisable actuators      | The factory settings cover the most common applications. As desired, individual parameters can be adapted for specific systems or servicing with a service tool (e.g. ZTH-GEN). The Modbus communication parameters (address, baud rate,) are set with the ZTH-GEN. Pressing push-button 3 while connecting the supply voltage resets the communication parameters to the factory setting. Quick addressing: The Modbus address can alternatively be set using push-buttons from 1 to 16. The value selected is added to the «Basic address» parameter and results in the effective Modbus address. For example, with a basic address of 140, Modbus addresses between 141 and 156 can be parameterised using quick addressing. |
| Pressure measurement           | Maintenance-free, dynamic, differential pressure sensor, proven in a wide range of applications, suitable for use in offices, hospital wards, alpine hotels or cruise liners.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Actuator                       | Two versions are available, depending on the size of the VAV unit: 5 or 10 Nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VAV – variable volumetric flow | The VAV-Compact is supplied with its modulating setpoint by a room temperature controller via Modbus. This facilitates demand-related, power-saving ventilation in individual rooms or zones of air conditioning systems. The operating range ( $\dot{V}_{min}$ and $\dot{V}_{max}$ ) can be set either locally with PC-Tool or ZTH-GEN or via Modbus.                                                                                                                                                                                                                                                                                                                                                                          |
| Operating and service devices  | Belimo PC-Tool or Service-Tool ZTH-GEN, pluggable on the VAV-Compact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Assembly and connection        | The VAV-Compact device, which is assembled on the unit by the OEM, is connected using the prefabricated connecting cable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OEM factory settings           | The VAV-Compact is mounted on the VAV unit by the unit manufacturer, who adjusts and tests it according to the application. The VAV-Compact is sold exclusively via the OEM channel for this reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Type listing

| Туре       | Torque | Power consumption | For wire sizing        | Weight           |
|------------|--------|-------------------|------------------------|------------------|
| LMV-D3-MOD | 5 Nm   | 2 W               | 4 VA (max. 5 A @ 5 ms) | Арргох.<br>500 g |
| NMV-D3-MOD | 10 Nm  | 3 W               | 5 VA (max. 5 A @ 5 ms) | Approx.<br>700 g |



#### Safety notes

|   |   | Ņ |   |  |
|---|---|---|---|--|
| 4 | L | ! | 7 |  |

Register

- The actuator must not be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- It may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during installation.
- The device may only be opened at the manufacturer's site. It does not contain any parts that can be replaced or repaired by the user.
- The cable must not be removed from the device.
- When calculating the required torque, the specifications supplied by the damper manufacturers (cross-section, design, installation site), and the air flow conditions must be observed.
- The device contains electrical and electronic components and is not permitted to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

#### Modbus overview

|         | No. | Adr | Register                                                                                    |
|---------|-----|-----|---------------------------------------------------------------------------------------------|
|         | 1   | 0   | Setpoint [%]                                                                                |
|         | 2   | 1   | Override control                                                                            |
|         | 3   | 2   | Command                                                                                     |
| Ę       | 4   | 3   | Actuator type                                                                               |
| atio    | 5   | 4   | Relative position [%]                                                                       |
| ber     | 6   | 5   | Absolute position [°] [mm]                                                                  |
| l o     | 7   | 6   | Relative volumetric flow [%]<br>(only for VAV/EPIV)                                         |
|         | 8   | 7   | Absolute volumetric flow (pressure) [m <sup>3</sup> /h] [l/min] [Pa]<br>(only for VAV/EPIV) |
|         | 9   | 8   | Sensor value [mv] [Ω] [-]                                                                   |
|         | 101 | 100 | Series number 1st part                                                                      |
|         | 102 | 101 | Series number 2nd part                                                                      |
|         | 103 | 102 | Series number 4th part                                                                      |
| <u></u> | 104 | 103 | Firmware version (Modbus module)                                                            |
| , Si    | 105 | 104 | Malfunction and service information                                                         |
| »       | 106 | 105 | Min [%]                                                                                     |
|         | 107 | 106 | Max [%]                                                                                     |
|         | 108 | 107 | Sensor type                                                                                 |
|         | 109 | 108 | Bus fail position                                                                           |

- Registers in Bold can be written
- Registers <100 (In operation) which can be written are volatile and should therefore be updated periodically
- Registers >100 which can be written are non-volatile

Commands All data is arranged in a table and addressed by 1..n (register) or 0..n-1 (address). No distinction is made between data types (Discrete Inputs, Coils, Input Registers, Holding Registers). As a consequence, all data can be accessed with the two commands for Holding Register. The commands for Discrete Inputs and Input Registers can be used as an alternative.

Standard commands: Read Holding Registers [3] Write Single Register [6]

Optional commands: Read Discrete Inputs [2] Read Input Registers [4] Write Multiple Registers [16]

#### Note regarding Read Discrete Inputs

The command reads one or more bits and can alternatively be used for register 105 (Malfunction and service information). The start address to be used is 1664.



| Modbus register description          |                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                  |                                             |              |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|
| Register 1: Setpoint                 | Setpoin<br>i.e. 01                                                                                                                                                                                                                                                                                             | t for actuator sett<br>0 000 correspone                                          | ting or volumetric flow in ds to 0100%                                                           | hundredths of one percen                    | t,           |
| Register 2: Override control         | Overrid                                                                                                                                                                                                                                                                                                        | ing the setpoint v                                                               | vith defined values                                                                              |                                             |              |
|                                      | Overri                                                                                                                                                                                                                                                                                                         | de control                                                                       |                                                                                                  |                                             |              |
|                                      | 0                                                                                                                                                                                                                                                                                                              | None                                                                             |                                                                                                  |                                             |              |
|                                      | 1                                                                                                                                                                                                                                                                                                              | Open                                                                             |                                                                                                  |                                             |              |
|                                      | 2                                                                                                                                                                                                                                                                                                              | Close                                                                            |                                                                                                  |                                             |              |
|                                      | 3                                                                                                                                                                                                                                                                                                              | Min                                                                              |                                                                                                  |                                             |              |
|                                      | 5                                                                                                                                                                                                                                                                                                              | Max                                                                              |                                                                                                  |                                             |              |
| Register 3: Command                  | Initiatio                                                                                                                                                                                                                                                                                                      | n of actuator fund                                                               | ctions for service and test                                                                      | ; the register is reset auto                | matically.   |
|                                      | Comm                                                                                                                                                                                                                                                                                                           | and                                                                              |                                                                                                  |                                             |              |
|                                      | 0                                                                                                                                                                                                                                                                                                              | None                                                                             |                                                                                                  |                                             |              |
|                                      | 1                                                                                                                                                                                                                                                                                                              | Adaption                                                                         |                                                                                                  |                                             |              |
|                                      | 2                                                                                                                                                                                                                                                                                                              | Test run                                                                         |                                                                                                  |                                             |              |
|                                      | 3                                                                                                                                                                                                                                                                                                              | Synchronisation                                                                  | า                                                                                                |                                             |              |
|                                      | 4                                                                                                                                                                                                                                                                                                              | Reset actuator                                                                   | malfunctions                                                                                     |                                             |              |
| Register 4: Actuator type            | Actuato                                                                                                                                                                                                                                                                                                        | r type; the alloca                                                               | tion may deviate from the                                                                        | e basic category with som                   | e actuators. |
|                                      | Actua                                                                                                                                                                                                                                                                                                          | tor type                                                                         |                                                                                                  |                                             |              |
|                                      | 0                                                                                                                                                                                                                                                                                                              | Actuator not co                                                                  | nnected / not known                                                                              |                                             |              |
|                                      | 1                                                                                                                                                                                                                                                                                                              | Air/water actuat                                                                 | tors with/without safety fur                                                                     | nction                                      |              |
|                                      | 2                                                                                                                                                                                                                                                                                                              | Volumetric flow                                                                  | controller VAV / EPIV                                                                            |                                             |              |
|                                      | 3                                                                                                                                                                                                                                                                                                              | Fire damper act                                                                  | tuator                                                                                           |                                             |              |
| Register 5: Relative position        | Relative<br>i.e. 0                                                                                                                                                                                                                                                                                             | e position in hund<br>10 000 correspor                                           | redths of one percent,<br>nd to 0 100%                                                           |                                             |              |
| Register 6: Absolute position        | Absolute position<br>0 10 000 (65535 if not supported by the actuator)<br>The unit depends on the device:<br>[°] for actuators with rotary movement<br>[mm] for actuators with linear movement                                                                                                                 |                                                                                  |                                                                                                  |                                             |              |
| Register 7: Relative volumetric flow | Relative<br>i.e. 0<br>This val<br>For all c                                                                                                                                                                                                                                                                    | e volumetric flow<br>10 000 correspoi<br>ue is available on<br>other types, 6553 | in hundredths of one perond<br>nd to 0 100%<br>Ily for VAV controllers and<br>5 will be entered. | cent of Vnom,<br>EPIV devices (actuator typ | be: 2).      |
| Register 8: Absolute volumetric flow | Absolute volumetric flow<br>This value is available only for VAV controllers and EPIV devices (actuator type: 2).<br>For all other types, 65535 will be entered.<br>The unit depends on the device:<br>[m <sup>3</sup> /h] for VAV controllers (or [Pa] for pressure applications)<br>[I/min] for EPIV devices |                                                                                  |                                                                                                  |                                             |              |
| Register 9: Sensor value             | Current sensor value; dependent on the setting in Register 108 The unit depends on the sensor type: $[mv] [\Omega]$ [-]                                                                                                                                                                                        |                                                                                  |                                                                                                  |                                             |              |
| Register 101, 103: Series number     | Each MP node has an unambiguous series number which is either impressed on or glued to the node. The series number consists of 4 segments, although only parts 1, 2 and 4 are displayed on Modbus.<br>Example: 00839-31324-064-008                                                                             |                                                                                  |                                                                                                  | l on or glued<br>1, 2 and 4 are             |              |
|                                      |                                                                                                                                                                                                                                                                                                                | Register 9                                                                       | Register 10                                                                                      | Register 11                                 |              |
|                                      |                                                                                                                                                                                                                                                                                                                | 1st part                                                                         | 2nd part                                                                                         | 4th part                                    |              |
|                                      |                                                                                                                                                                                                                                                                                                                | 00839                                                                            | 31234                                                                                            | 008                                         |              |
| Register 104: Firmware Version       | Firmwa<br>e.g. 10'                                                                                                                                                                                                                                                                                             | re version of Moc<br>1 ⊠ V1.01                                                   | lbus module (VX.XX)                                                                              |                                             |              |



| Modbus register description                                          | (con                                         | tinued)                                                      |                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Register 105:<br>Malfunction and service information                 | The<br>serv                                  | status i<br>ice info                                         | nformation is split into messages about the actuator (malfunctions) and other rmation.                                                                                                                                                                                                                                                                                             |
|                                                                      | [                                            | Bit                                                          | Description                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                      | ê                                            | 0                                                            | Excessive utilisation                                                                                                                                                                                                                                                                                                                                                              |
|                                                                      | bŢ                                           | 1                                                            | Mechanical travel increased                                                                                                                                                                                                                                                                                                                                                        |
|                                                                      | No                                           | 2                                                            | Mechanical overload                                                                                                                                                                                                                                                                                                                                                                |
|                                                                      | S                                            | 3                                                            | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | tio                                          | 4                                                            | Safety-relevant faults (fire protection only)                                                                                                                                                                                                                                                                                                                                      |
|                                                                      | lnc                                          | 5                                                            | Damper test error (fire protection only)                                                                                                                                                                                                                                                                                                                                           |
|                                                                      | alfu                                         | 6                                                            | Duct temperature too high (fire protection only)                                                                                                                                                                                                                                                                                                                                   |
|                                                                      | Σ                                            | 7                                                            | Smoke detector tripped (fire protection only)                                                                                                                                                                                                                                                                                                                                      |
|                                                                      |                                              | 8                                                            | Internal activity (test run, adaption,)                                                                                                                                                                                                                                                                                                                                            |
|                                                                      | (te)                                         | 9                                                            | Gear disengagement active                                                                                                                                                                                                                                                                                                                                                          |
|                                                                      | - G                                          | 10                                                           | Bus watchdog triggered                                                                                                                                                                                                                                                                                                                                                             |
|                                                                      | higl                                         | 11                                                           | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | )<br>S                                       | 12                                                           | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | Ž                                            | 13                                                           | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | လီ                                           | 14                                                           | -                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      |                                              | 15                                                           | -                                                                                                                                                                                                                                                                                                                                                                                  |
| Register 106: Min / Vmin setting<br>Register 107: Max / Vmax setting | Maii<br>Mini<br>i.e. C<br>Caut<br>Mini       | mum lii<br>mum lii<br>010 00<br>ion: Chi<br>mum lii          | nit (position or volumetric flow) in hundredths of one percent,<br>00 correspond to 0100%<br>anging the setting may result in malfunctions.<br>mit (position or volumetric flow) in hundredths of one percent,                                                                                                                                                                     |
|                                                                      | i.e. z<br>Caut                               | ion: Ch                                                      | anging the setting may result in malfunctions.                                                                                                                                                                                                                                                                                                                                     |
| Register 108: Sensor type                                            | Sens<br>at th                                | or type<br>e Y inp                                           | connected to the actuator; in the absence of sensor specification, the switching ut will have the effect of a local compulsion.                                                                                                                                                                                                                                                    |
|                                                                      | Ser                                          | nsor tv                                                      | De                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                      | C                                            | ) No                                                         | one                                                                                                                                                                                                                                                                                                                                                                                |
| Note                                                                 | 1                                            | Ac                                                           | tive sensor (mV)                                                                                                                                                                                                                                                                                                                                                                   |
| After changing the sensor type, the actuator                         | 2                                            | Pa                                                           | assive sensor 1 k ( $\Omega$ )                                                                                                                                                                                                                                                                                                                                                     |
| must always be restarted in order for correct                        | 3                                            | B Pa                                                         | assive sensor 1 20 k (Ω)                                                                                                                                                                                                                                                                                                                                                           |
| sensor values to be read out.                                        | 4                                            | l Sv                                                         | vitching contact (0 / 1)                                                                                                                                                                                                                                                                                                                                                           |
| Register 109: Bus fail position                                      | Mod<br>com<br>The<br>nor t<br>the t<br>Trigg | bus cor<br>munica<br>bus mo<br>he ove<br>bus fail<br>gered b | nmunication is not monitored as standard. In the event of a breakdown in<br>tion, the actuator retains the current setpoint.<br>nitoring controls the Modbus communication. If neither the setpoint (Register 1)<br>rride control (Register 2) is renewed within 120 seconds, the actuator controls to<br>position (closed / open).<br>us monitoring is indicated in Register 105. |
|                                                                      |                                              | ) La                                                         | st setpoint (no bus monitoring)                                                                                                                                                                                                                                                                                                                                                    |
|                                                                      |                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                    |

 1
 Fast close if time is exceeded

 2
 Fast open if time is exceeded



Resistance

range

850 ... 1600 Ω

850 ... 1600 Ω

200 ... 50 kΩ

Resolution

1Ω

1Ω

1Ω

#### Electrical installation



#### Connection with passive sensor, e.g. Pt1000, Ni1000, NTC



## Connection with switching contact, e.g. Δp-monitor



Connection with active sensor, e.g. 0 ... 10 V @ 0 ... 50°C





#### **Tool connection**

Setting and diagnostics

Setting and the diagnostics of the connected VAV-Compact controller can be checked and set quickly and easily with the Belimo PC-Tool or the Service-Tool ZTH-GEN.

On-board service connection

The service connection integrated in the VAV-Compact allows the console used to be connected quickly.

## Belimo VAV operating and service devices

- Belimo PC-Tool, with level converter ZIP-USB-MP



MP connection (5) The VAV-Compact can also communicate (connection wire 5) with the Service-Tools via the MP connection. The connection can be established during operation on site, i.e. in the connection socket, at the tool socket of the Belimo room temperature controller CR24 or on

the floor or control cabinet terminals.





#### Operating controls and indicators



**1** Direction of rotation switch

Switching over: Direction of rotation changes

2 Push-button and LED display green

| Off:            | No power supply or fault                                   |
|-----------------|------------------------------------------------------------|
| Illuminated:    | In operation                                               |
| Flashing:       | Address mode: pulses according to set address (1 16) when  |
|                 | starting: reset to factory setting (communication)         |
| Press button:   | in standard mode: switches on angle of rotation adaptation |
|                 | In address mode: confirmation of set address (1 16)        |
| Push-button and | LED display yellow                                         |
| Off:            | The actuator is ready                                      |
| Illuminated     | Adaption or synchronising process active                   |

#### Illuminated: synchronising process or actuator in address mode (green LED indicator flashing) Modbus communication active Flickering: Press button: in operation (>3 s): switch address mode on and off in address mode: address setting by pressing several times when starting (>5 s): reset to factory setting (communication)

#### (4) Gear disengagement button

Press button: Gear disengaged, motor stops, manual override possible Release button: Gear engaged, synchronisation starts, followed by standard operation

## **(5)** Service plug

3

For connecting parameterising and service tools

## Dimensions [mm]

Dimensional drawings LMV-D3-MOD







## **ZTH-ZEN**

Service-Tool for parameterisable and communicative Belimo actuators and VAV controllers. Connection via service socket on the device or MP/PP connection.

#### Information

Belimo Automation AG reserves the right to implement supplements, changes and improvements at any time, i.e. without prior notification.

- version overview,
- release information,
- most up-to-date operating instruction, etc.

| Technical data                |                                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                         |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Electrical data               | Power supply                                                                                                                    |                                       | AC 24V, 50/60 Hz, DC 24V (from actuator)                                                                                                                                                                                                                                                |  |
|                               | Operating range                                                                                                                 |                                       | AC 19.2 28.8V/DC 21.6 28.8V                                                                                                                                                                                                                                                             |  |
|                               | Power                                                                                                                           | Operation                             | 1 W                                                                                                                                                                                                                                                                                     |  |
|                               | consumption                                                                                                                     | Dimensioning                          | 2 VA                                                                                                                                                                                                                                                                                    |  |
|                               | Connection                                                                                                                      |                                       | Socket for Belimo PP connection, RJ12                                                                                                                                                                                                                                                   |  |
|                               | Connecting cable                                                                                                                |                                       | see «Connection»                                                                                                                                                                                                                                                                        |  |
| Interface                     | Communication                                                                                                                   |                                       | Point to Point (PP), no bus mode (MP)                                                                                                                                                                                                                                                   |  |
| Supported devices             | Belimo actuator/VAV controller                                                                                                  |                                       | with PP/MP connection, see «Supported devices»,<br>Scope of function dependent on type of device                                                                                                                                                                                        |  |
| Operating                     | LCD display                                                                                                                     |                                       | 2 x 16 characters, with background illumination                                                                                                                                                                                                                                         |  |
| J                             |                                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                         |  |
|                               | Keys                                                                                                                            |                                       |                                                                                                                                                                                                                                                                                         |  |
|                               | Keys<br>Quick start guide                                                                                                       |                                       |                                                                                                                                                                                                                                                                                         |  |
| Safety                        | Keys<br>Quick start guide<br>Protection class                                                                                   |                                       | ♪ / ☆ / - / + / OK         enclosed stickers, de/en         III Safety extra-low voltage                                                                                                                                                                                                |  |
| Safety                        | Keys<br>Quick start guide<br>Protection class<br>Electromagnetic                                                                | compatibility                         | ⊕ / ŵ / - / + / OK          enclosed stickers, de/en          III Safety extra-low voltage          CE in accordance with 2004/108/EC                                                                                                                                                   |  |
| Safety                        | Keys<br>Quick start guide<br>Protection class<br>Electromagnetic<br>Operating tempe                                             | compatibility                         | ⊕ / ŵ / - / + / OK          enclosed stickers, de/en             Ⅲ Safety extra-low voltage             CE in accordance with 2004/108/EC             0 50°C, non-condensing                                                                                                            |  |
| Safety                        | Keys<br>Quick start guide<br>Protection class<br>Electromagnetic<br>Operating tempe<br>Non-operating te                         | compatibility<br>rature<br>emperature | ⊕ / ŵ / - / + / OK          enclosed stickers, de/en             Ⅲ Safety extra-low voltage             CE in accordance with 2004/108/EC             0 50°C, non-condensing             -20 50°C, non-condensing                                                                       |  |
| Safety<br>Dimensions / Weight | Keys<br>Quick start guide<br>Protection class<br>Electromagnetic<br>Operating tempe<br>Non-operating te<br>Dimensions           | compatibility<br>rature<br>emperature | ⊕ / ŵ / - / + / OK          enclosed stickers, de/en             Ⅲ Safety extra-low voltage             CE in accordance with 2004/108/EC             0 50°C, non-condensing             -20 50°C, non-condensing             L x W x D: 85 x 65 x 23 mm                                |  |
| Safety<br>Dimensions / Weight | Keys<br>Quick start guide<br>Protection class<br>Electromagnetic<br>Operating tempe<br>Non-operating te<br>Dimensions<br>Weight | compatibility<br>rature<br>emperature | ⊕ / Ŷ / - / + / OK             enclosed stickers, de/en             III Safety extra-low voltage             CE in accordance with 2004/108/EC             0 50°C, non-condensing             -20 50°C, non-condensing             L x W x D: 85 x 65 x 23 mm             Approx. 260 g |  |

#### Supported devices

| Damper product range                                       | MF /MP /MFT(2) /LON                          |                         |
|------------------------------------------------------------|----------------------------------------------|-------------------------|
| Valve product range                                        | MF /MP /MFT(2) /LON                          |                         |
| EPIV – pressure-independent<br>characterised control valve | P6WC24E                                      | available starting 2011 |
| Fire damper actuator                                       | BF-TopLine with BKN230-24MP                  |                         |
| VAV product range                                          | VRD2 / VRD2-L                                | available 1992-2007     |
|                                                            | VRD3                                         | available starting 2008 |
|                                                            | VRP-M (VAV and STP applications)             | available starting 2005 |
|                                                            | NMV-D2                                       | available 1992 to 2000  |
|                                                            | LMV-D2M / NMV-D2M                            | available 2000 to 2006  |
|                                                            | LMV-D2-MP / NMV-D2-MP / SMV-D2-MP, LHV-D2-MP | available 2006 to 2011  |
|                                                            | LMV-D2LON / NMV-D2LON                        | available 2006 to 2011  |
|                                                            | LMV-D3-MP / NMV-D3-MP / SMV-D3-MP, LHV-D3-MP | available starting 2011 |

LMV-D3LON / NMV-D3LON

#### Safety notes



• The device must not be used outside the specified field of application, especially not in aircraft or in any other airborne means of transport.

available starting 2011

- Connection permitted only to Belimo devices with 24V safety extra-low voltage and PP/ MP interface.
- Changes of parameters, etc. may not be performed except after consultation/specification of the OEM, device or mechanical/electrical contractor. Operating and adjustment regulations must be observed.



| versions, compatibilities                                                                                                                                                                             |                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                       |                                | This document describes t                                                                                                                                                                                                                                         | he function and handling                                                                                                                               | ) of the new ZTH-GEN V4.xx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Current information regarding<br>$\cdot$ Upgrade ZTH-VAV $\rightarrow$ ZTH-GEN                                                                                                                        |                                | The ZTH-GEN V4.xx contai<br>ZTH-VAV, in addition to the                                                                                                                                                                                                           | ns the functionality of all<br>ose of the new VAV-Comp                                                                                                 | previous versions of ZTH-GEN and pact D3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Firmware upgrade to V4.xx                                                                                                                                                                             |                                | Previous ZTH versions can be upgraded to a ZTH-GEN V4.xx by means of a simple f download.                                                                                                                                                                         |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                       | ZEV                            | The adjustment tool ZEV (                                                                                                                                                                                                                                         | 1992 to 2007) is replace                                                                                                                               | d by the ZTH-GEN V4.xx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 7                                                                                                                                                                                                     | ZTH-VAV                        | Will be replaced by the new ZTH-GEN V4.xx                                                                                                                                                                                                                         |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| ZTH-GEN V2.xx                                                                                                                                                                                         | : / V3.xx                      | Will be replaced by the ne                                                                                                                                                                                                                                        | w ZTH-GEN V4.xx                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                       | ,                              | · ,                                                                                                                                                                                                                                                               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Connection                                                                                                                                                                                            |                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| connection                                                                                                                                                                                            |                                |                                                                                                                                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Connection and                                                                                                                                                                                        | d supply                       | The ZTH-GEN is supplied v<br>• directly at the Service so<br>• via the PP/MP connectio<br>controller CR24                                                                                                                                                         | ia the actuator/VAV conti<br>cket of the actuator/VAV<br>n (U5) e.g. connection so                                                                     | roller. The connection is set up<br>controller or<br>cket, in the control cabinet, room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Connection and<br>Local connection to service                                                                                                                                                         | d supply<br>e socket           | The ZTH-GEN is supplied v<br>• directly at the Service so<br>• via the PP/MP connectio<br>controller CR24                                                                                                                                                         | ia the actuator/VAV contr<br>cket of the actuator/VAV<br>n (U5) e.g. connection so                                                                     | roller. The connection is set up<br>controller or<br>cket, in the control cabinet, room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Connection and<br>Local connection to service<br>Recommendation<br>Wire the PP connection (U5) to the<br>loor distributor/control cabinet.                                                            | d supply<br>e socket           | The ZTH-GEN is supplied v<br>• directly at the Service so<br>• via the PP/MP connection<br>controller CR24<br>Connection to<br>VAV:D2-MP / LON<br>VAV:D3-MP / LON<br>MF / MP / LON<br>EPIV: P6WC24E                                                               | ia the actuator/VAV contr<br>cket of the actuator/VAV<br>n (U5) e.g. connection so<br>Cable type<br>ZK1-GEN (enclosed)                                 | roller. The connection is set up<br>controller or<br>cket, in the control cabinet, room<br>Connection<br>Direction connection to Service<br>socket<br>- plug in the plug<br>- set up contact with clockwise<br>rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Connection and<br>Local connection to service<br>Recommendation<br>Wire the PP connection (U5) to the<br>loor distributor/control cabinet.<br>"his means there is no need for direct<br>o the device. | d supply<br>e socket<br>access | The ZTH-GEN is supplied v<br>• directly at the Service so<br>• via the PP/MP connection<br>controller CR24<br>Connection to<br>VAV:D2-MP / LON<br>VAV:D3-MP / LON<br>MF / MP / LON<br>EPIV: P6WC24E<br>VAV: VRP-M 1)<br>F/S: BKN230-24MP (BF-<br>Top)             | ia the actuator/VAV conti<br>cket of the actuator/VAV<br>n (U5) e.g. connection so<br>Cable type<br>ZK1-GEN (enclosed)                                 | Connection<br>Direction connection to Service<br>socket<br>- plug in the plug<br>- set up contact with clockwise<br>rotation<br>ZK4-GEN<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-M<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>VPP-V<br>V<br>V<br>VPP-V<br>V<br>V<br>V |  |  |
| Connection and<br>Local connection to service<br>Recommendation<br>Wire the PP connection (U5) to the<br>loor distributor/control cabinet.<br>This means there is no need for direct<br>o the device. | d supply<br>e socket<br>access | The ZTH-GEN is supplied v<br>• directly at the Service so<br>• via the PP/MP connectio<br>controller CR24<br>Connection to<br>VAV:D2-MP / LON<br>VAV:D3-MP / LON<br>MF / MP / LON<br>EPIV: P6WC24E<br>VAV: VRP-M 1)<br>F/S: BKN230-24MP (BF-<br>Top)<br>VAV: VRD3 | ia the actuator/VAV contricket of the actuator/VAV n (U5) e.g. connection so Cable type ZK1-GEN (enclosed) ZK4-GEN (Accessories) ZK6-GEN (Accessories) | Connection<br>Direction connection to Service<br>socket<br>- plug in the plug<br>- set up contact with clockwise<br>rotation<br>ZK4-GEN<br>ZTH-GEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

### Direction connection to terminals



#### Connection in the MP bus system



Direct connection to the MP bus or MP master is not possible with the ZTH-GEN.

Solution: Use the service socket on the actuator/VAV controller or temporarily disconnect the MP connection of the MP device from the MP bus and connect the ZTH-GEN to the MP connection.



| Operating                            |                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | The operating device is started and the data of the connected device is read out when the ZTH-GEN is connected to the Belimo actuator/VAV controller.<br>The available adjustment and operating options are displayed in accordance with the device type. The available setting parameters are listed in the respective product documentation for the actuators/VAV controller. |
| Operating elements                   | LCD display - Background illumination - Display 2 x 16 characters                                                                                                                                                                                                                                                                                                               |
|                                      | Key function       LMV-D3-MP         ✓ and ▼ Forward/backward, abort entry       Office 12 - SA         - and + Change value/status       ✓ ▲ - + OK         OK Confirm entry       ○ ○ ○ ○ ○ ○                                                                                                                                                                                 |
|                                      | RJ12 tool socket Supply 24V / PP communication                                                                                                                                                                                                                                                                                                                                  |
|                                      | <b>Operating instruction</b><br>A quick start guide and a sticker with the basic functions for the the rear of the unit are enclosed with the ZTH-GEN.                                                                                                                                                                                                                          |
| Language setting, unit depiction     | Language and units can be set in the Configuration menu.                                                                                                                                                                                                                                                                                                                        |
| Operating                            | Operating is context-related, i.e. the user sees only the options available for the connected device.<br>The corresponding Configuration table is read from the actuator for this purpose. In addition to the parameter type, this table also contains the corresponding divisions, e.g.: minimally adjustable running time/type. Non-relevant options are not displayed.       |
| Menu structure, handling             | The operating menu can be run through from both sides $\Im \Omega$ .                                                                                                                                                                                                                                                                                                            |
|                                      | Device identification     Starting / ending       r2     Type       Position     Type       r2     Designation       r2     Designation       r3     Option, Range       Option 1     Option, Range       Option 2     Option X                                                                                                                                                 |
| Starting / ending                    | The connection to the actuator/VAV controller is started by plugging in the RJ plug and terminated by unplugging it.                                                                                                                                                                                                                                                            |
| Device specifications/Technical data | For a more detailed description, including setting parameters, we draw your attention to the respective separate product information.                                                                                                                                                                                                                                           |



## Configuration

#### Start Configuration

## tion 1. Press the key (OK) while simultaneously plugging in the connecting cable

2. Configuration menu display appears

## **Configuration Menu**

| Option / Display            | Setting                   | Product    | Explanation                                            |
|-----------------------------|---------------------------|------------|--------------------------------------------------------|
|                             |                           | range      |                                                        |
| HW Version Vx.x             |                           |            | Display of the current hardware and                    |
| FW Version Vx.x             |                           |            | firmware version of the ZTH-GEN                        |
| Text                        | German / English          | -          |                                                        |
| VAV unit                    | <b>m³/h</b> / l/s / cfm   | VAV        |                                                        |
| EPIV unit                   | m³/h / <b>l/min</b> / gpm | Valves     |                                                        |
| Supply                      |                           |            | Display of the current AC 24V                          |
| AC V VHW: %                 |                           |            | supply voltage, with direct                            |
|                             |                           |            | connection to terminals (ZK2-GEN)                      |
| Start MP tester             | OK                        | -          | MP bus diagnostics tool for system                     |
|                             |                           |            | integrators.                                           |
|                             |                           |            | The MP tester is not part of this                      |
|                             |                           |            | documentation.                                         |
| PICCV function              | 0/1                       | Valves     | Belimo US                                              |
|                             |                           |            | Enable PICCV Wizard function                           |
| Expert Mode 1)              | 0/1                       | VAV        | Enable VAV settings:                                   |
|                             |                           |            | – Switching mode,                                      |
|                             |                           |            | – set $\dot{V}$ min / $\dot{V}$ max to original values |
|                             |                           |            | (call up OEM setting)                                  |
| Advanced Mode <sup>2)</sup> | 0/1                       | VAV        | Enable settings:                                       |
|                             |                           | Fire       | - VAV: Direction of rotation,                          |
|                             |                           | protection | – BF-Top: Adaption                                     |
| Exit Configuration          | ОК                        |            |                                                        |

Activate options 1) and 2) only as needed and with the respective know-how; the adjustment of the respective parameters requires special expertise.

#### **Basic functions**

Device-specific identification

| Key | Display examples (Read | Explanation                                     |
|-----|------------------------|-------------------------------------------------|
|     | only)                  |                                                 |
|     | LMV-D3-MP              | Type designation of the actuator/VAV controller |
|     | Office 2.12 Supply air | Position (16 characters) optional               |
| -   | LMV-D3-MP              | Type designation of the actuator/VAV controller |
|     | DN160 / xxx            | Designation (16 characters) optional            |
| +   | LMV-D3-MP              | Type designation of the actuator/VAV controller |
|     | FW: Vxx.xx.00          | Firmware version of the actuator/VAV controller |
| OK  | Address: xx            | MP address MP1 8 / PP (PP: no bus operation)    |
|     | 0073040033146142       | Serial number of the actuator/VAV controller    |

Position and Designation (16 characters) optional.

These display options can be described with the PC-Tool if required.

Set the MP bus address

## Key Display examples (Read/ write) Explanation A MP address: PP -new: MP1 Active setting (PP: no bus operation) Set the desired address MP1...8 (OK)



#### Functions for damper product range/valve product range

The ZTH-GEN recognizes the device generation, i.e. the menu and the setting options are displayed accordingly to the connected device.



Menu tree The following menu tree shows the adjustment/display possibilities of an LM24A-MP.

#### Functions for EPIV - pressure-independent characterised control valve



**Menu tree** The following menu tree shows the adjustment/display possibilities of an EPIV.





#### Information: VAV-Universal actuators

The V-actuators L/N/SM24A-V, L/NMQ24A-SRV-ST, which fit the VAV universal controllers VRD3 / VRP-M (STP) / VRP / VRP-STP, have a tool connection but are nevertheless not tool-capable!

#### Functions for BF-TopLine fire protection actuators

Functions for VAV product range

Menu tree The following menu tree shows the adjustment/display possibilities of a BF-TopLine.





| Checking the power supply |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Checking the power supply | The ZTH-GEN offers the possibility of checking the AC 24V power supply (III safety extra-low voltage) of the Belimo devices. Voltages >30V are not permitted! Application e.g. Commissioning, troubleshooting in the event of a malfunction.                                                                                                                                                                                                                                                                                                                                                |  |  |
|                           | Measurement procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                           | Equipment: ZTH-GEN, ZK2-GEN         Connection:       - connect free wires of the ZK2-GEN to AC 24V.         • white on GND       (connection 1 actuator/VAV controller)         • blue on ~       (connection 2 actuator/VAV controller)         • third wire (turquoise)       do not connect         - Do not connect RJ11 plug to ZTH-GEN yet!         Start:       - Press the ZTH-GEN key (OK) while at the same time connecting the RJ12 plug         - Select Supply function with arrow key (▼)         End:       Disconnect ZTH-GEN RJ12 plug or end Configuration function (OK) |  |  |
| Display                   | Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                           | SupplyokayAC 24VVHW:88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                           | Quality:okay: AC supply in the division 19.2 28.8VAC value:measured AC voltage (accuracy ±1.0V insofar as VHW >95%)VHW:Relationship of positive to negative half-wave<br>The deviation of the positive half-wave value to the value of the negative half-<br>wave may not be too large. As a rule: positive HW / negative HW x 100 should<br>be >80%.                                                                                                                                                                                                                                       |  |  |
|                           | Explanation VHW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |



#### Possible problems

- The following items influence the half-wave load:
- Transformer too small in its dimensionslong signal cable length from transformer to VAV controller



# **CB** Electrical duct heater



Duct heater with spigot connection for standard spiral ducts. Manufactured from Aluzinc-coated sheet steel with a heating element in stainless steel. The heater has integral overheating protection with a manual reset function. The CB heater has rubber seals on the connecting spigots. Suitable for control by room thermostat or Pulser.

The minimum air volume is based on a minimum air velocity of 1.5 m/s. These duct heaters are designed for a maximum output air temperature of 50°C. The CB can be installed in a horizontal or vertical duct. In a horizontal duct, the connection box should be installed facing upwards, or rotated 90° to one side. Installation with the connection box facing downwards is not allowed.





Recommended installation positions



CB-2 400V 2~

C 🗖 🗸

#### CB-3 230V 3~ 400V 3~

- 🗌 c

CB-4 12kW, 400V 3~



F = All phase breaker H = Thyristor type Pulser or TTC

A = Heating elements B = Over heat protection with automatic reset

C = Over heat protection with manual reset E = Interlocking

- 🗌 В

L1 L2 L3 N

в 🔄 –





**CBM** Duct heater

#### Description

#### Duct heater with integral control equipment

Duct heater with spigot connection for standard spiral circular ducts. Manufactured from Aluzinc-coated sheet steel with a heating element in stainless steel. The heater has integral overheating protection with a manual reset function. The CBM have rubber seals on the connecting spigots. The temperature is set on the cover of the duct heater. The unit is controlled by an integral electronic temperature regulator, using so-called timeproportional Pulse/Pause technology. This provides extremely precise temperature control. As a thyristor is used for adjusting the temperature, the unit has no moving parts. This means that it is silent and not susceptible to wear and tear. Terminals for interlocking the heater, via a pressureand airflow guard are available in the terminal box. The minimum air volume is based on a minimum air velocity of 1.5 m/s. These duct heaters are designed for a maximum output air temperature of 50°C.

All CBMs are delivered with duct sensor TG-K330 (0-30°C) as standard.





Recommended installation positions

- A = Heating elements
- B = Over heat protection with automatic reset
- C = Over heat protection with manual reset
- E = Interlocking
- F = All phase breaker
- H = Thyristor type Pulse or TTC
- J = Sensor
- T = Air flow switch/Pressure switch

CBM-1 (230V~)



#### CBM-2 (400V 2~)

## CBM-3 (400V 3~)






| 60 G 6014 | ØD   | Р    | U      | I.   | Q <sub>min</sub> | m    | Controller Line | Wiring  |
|-----------|------|------|--------|------|------------------|------|-----------------|---------|
| CR & CRW  | (mm) | (kw) | (v)    | (A)  | (m³/h)           | (Kg) | Controlled by   | diagram |
| 100-0.4   | 100  | 0.4  | 230~   | 1.7  | 45               | 2    | Pulser          | CB-1    |
| 100-0.6   | 100  | 0.6  | 230~   | 2.6  | 45               | 2    | Pulser          | CB-1    |
| 125-0.6   | 125  | 0.6  | 230~   | 2.6  | 70               | 2.5  | Pulser          | CB-1    |
| 125-1.2   | 125  | 1.2  | 230~   | 5.2  | 70               | 2.5  | Pulser          | CB-1    |
| 125-1.8   | 125  | 1.8  | 230~   | 7.8  | 65               | 2.5  | Pulser          | CB-1    |
| 150-1.2   | 150  | 1.2  | 230~   | 5.2  | 100              | 2.5  | Pulser          | CB-1    |
| 150-2.1   | 150  | 2.1  | 230~   | 9.1  | 100              | 3.2  | Pulser          | CB-1    |
| 150-2.7   | 150  | 2.7  | 230~   | 11.7 | 100              | 3.0  | Pulser          | CB-1    |
| 150-5.0   | 150  | 5.0  | 400 2~ | 12.5 | 100              | 3.8  | Pulser          | CB-2    |
| 160-1.2   | 160  | 1.2  | 230~   | 5.2  | 115              | 3    | Pulser          | CB-1    |
| 160-2.1   | 160  | 2.1  | 230~   | 9.1  | 115              | 3.2  | Pulser          | CB-1    |
| 160-2.7   | 160  | 2.7  | 230~   | 11.7 | 115              | 3.5  | Pulser          | CB-1    |
| 160-5.0   | 160  | 5.0  | 400 2~ | 12.5 | 115              | 4    | Pulser          | CB-2    |
| 200-2.1   | 200  | 2.1  | 230~   | 9.1  | 180              | 3.9  | Pulser          | CB-1    |
| 200-3.0   | 200  | 3.0  | 230~   | 13   | 180              | 4    | Pulser          | CB-1    |
| 200-5.0   | 200  | 5.0  | 400 2~ | 12.5 | 180              | 4.5  | Pulser          | CB-2    |
| 250-3.0   | 250  | 3.0  | 230~   | 13   | 280              | 4.8  | Pulser          | CB-1    |
| 250-6.0   | 250  | 6.0  | 400 2~ | 16   | 280              | 5.2  | Pulser          | CB-2    |
| 250-9.0   | 250  | 9.0  | 400 3~ | 13   | 280              | 6.2  | TTC             | CB-3    |
| 315-3.0   | 315  | 3.0  | 230    | 13   | 430              | 6    | Pulser          | CB-1    |
| 315-6.0   | 315  | 6.0  | 400 2~ | 15   | 430              | 6.3  | Pulser          | CB-2    |
| 315-9.0   | 315  | 9.0  | 400 3~ | 13   | 430              | 7.3  | TTC             | CB-3    |
| 315-12.0  | 315  | 12.0 | 400 3~ | 17.3 | 430              | 7.6  | TTC             | CB-4    |
| 355-6.0   | 355  | 6.0  | 400 2~ | 15   | 550              | 7    | Pulser          | CB-2    |
| 355-9.0   | 355  | 9    | 400 3~ | 13   | 550              | 8.2  | TTC             | CB-3    |
| 355-12.0  | 355  | 12   | 400 3~ | 17.3 | 550              | 8.5  | TTC             | CB-4    |
| 400-6.0   | 400  | 6    | 400 2~ | 15   | 700              | 8    | Pulser          | CB-2    |
| 400-9-0   | 400  | 9    | 400 3~ | 13   | 700              | 8.5  | TTC             | CB-3    |
| 400-12.0  | 400  | 12   | 400 3~ | 17.3 | 700              | 9.2  | TTC             | CB-4    |

Pressure drop graph







## **VBC** Water heating coil for circular ducts

Water-heating coil for heating air in ventilation systems with circular ducts. Aluzinc-coated casing, heat transmission element with copper tubes and aluminium fins. Removable cover for cleaning the unit.

The water-heating coil can be installed in a horizontal duct. Max operating temperature 150°C. Max operating pressure 1.6 MPa (16 Bar) 2- and 3-rows batteries.







| VBC   | ØD  | В   | Н   | Ødy | F   | G  | К   | L.  | kg   |
|-------|-----|-----|-----|-----|-----|----|-----|-----|------|
| 100-2 | 100 | 179 | 225 | 10  | 137 | 40 | 300 | 380 | 3.8  |
| 100-3 | 100 | 180 | 238 | 10  | 100 | 40 | 276 | 356 | 3.9  |
| 125-2 | 125 | 179 | 225 | 10  | 137 | 40 | 300 | 380 | 3.8  |
| 125-3 | 125 | 255 | 313 | 10  | 175 | 40 | 276 | 356 | 5.8  |
| 160-2 | 160 | 253 | 300 | 10  | 212 | 40 | 300 | 380 | 5.7  |
| 160-3 | 160 | 255 | 313 | 10  | 175 | 40 | 276 | 356 | 5.8  |
| 200-2 | 200 | 253 | 300 | 10  | 212 | 40 | 300 | 380 | 5.7  |
| 200-3 | 200 | 330 | 398 | 22  | 250 | 40 | 276 | 356 | 8.6  |
| 250-2 | 250 | 328 | 385 | 22  | 250 | 40 | 300 | 380 | 8.2  |
| 250-3 | 250 | 405 | 473 | 22  | 325 | 40 | 276 | 356 | 11.5 |
| 315-2 | 315 | 403 | 460 | 22  | 325 | 40 | 300 | 380 | 10.6 |
| 315-3 | 315 | 504 | 557 | 22  | 400 | 40 | 276 | 356 | 14.6 |
| 400-2 | 400 | 479 | 534 | 22  | 400 | 65 | 300 | 430 | 13.5 |
| 400-3 | 400 | 539 | 707 | 22  | 425 | 65 | 330 | 460 | 20.0 |
| 500-2 | 500 | 529 | 707 | 22  | 425 | 65 | 330 | 460 | 17.2 |

| VBC   | Air flow | Pressure<br>drop | ∆T air at T<br>water<br>60/40°C | Water<br>flow<br>rate | Water<br>speed | Pressure<br>drop | Power | ∆T ait at<br>T water<br>90/70°C | Water<br>flow<br>rate | Water<br>speed | Pressure<br>drop | Power |
|-------|----------|------------------|---------------------------------|-----------------------|----------------|------------------|-------|---------------------------------|-----------------------|----------------|------------------|-------|
|       | (m³/h)   | (Pa)             | (K)                             | (l/s)                 | (m/s)          | (kPa)            | (kW)  | (K)                             | (l/s)                 | (m/s)          | (kPa)            | (kW)  |
| 100-2 | 0.04     | 35               | 16                              | 0.01                  | 0.15           | 0.1              | 0.85  | 32.5                            | 0.02                  | 0.3            | 1                | 1.7   |
| 125-2 | 0.06     | 72               | 13                              | 0.01                  | 0.2            | 0.1              | 1     | 28.3                            | 0.03                  | 0.4            | 1                | 2.2   |
| 160-2 | 0.1      | 40               | 19.9                            | 0.03                  | 0.4            | 3                | 2.6   | 35.8                            | 0.06                  | 0.8            | 8                | 4.6   |
| 200-2 | 0.15     | 73               | 17.3                            | 0.04                  | 0.6            | 5                | 3.5   | 30.4                            | 0.07                  | 1.1            | 13               | 6.1   |
| 250-2 | 0.25     | 68               | 17.5                            | 0.07                  | 0.5            | 3                | 5.7   | 31.7                            | 0.13                  | 0.9            | 7                | 10.3  |
| 315-2 | 0.39     | 69               | 18.1                            | 0.11                  | 0.5            | 3                | 9.2   | 32                              | 0.2                   | 1              | 8                | 16.3  |
| 400-2 | 0.63     | 77               | 17.7                            | 0.18                  | 0.6            | 4                | 14.6  | 31                              | 0.31                  | 1.1            | 10               | 25.5  |
| 500-2 | 0.9      | 45               | 19.4                            | 0.28                  | 0.7            | 6.6              | 22.7  | 31                              | 0.31                  | 1.1            | 10               | 25.5  |

Coil calculation



VBC 500-2

3 1,0 qv (m³/s)

0,8

VBC 400

0,6

| VBC   | Air flow | Pressure<br>drop | ∆T air at T<br>water<br>60/40°C | Water<br>flow<br>rate | Water<br>speed | Pressure<br>drop | Power | ∆T ait at<br>T water<br>90/70°C | Water<br>flow<br>rate | Water<br>speed | Pressure<br>drop | Power |
|-------|----------|------------------|---------------------------------|-----------------------|----------------|------------------|-------|---------------------------------|-----------------------|----------------|------------------|-------|
|       | (m³/h)   | (Pa)             | (K)                             | (l/s)                 | (m/s)          | (kPa)            | (kW)  | (K)                             | (l/s)                 | (m/s)          | (kPa)            | (kW)  |
| 100-3 | 0.04     | 39               | 25.9                            | 0.02                  | 0.24           | 0.85             | 1.35  | 47.4                            | 0.03                  | 0.45           | 2.65             | 2.46  |
| 125-3 | 0.06     | 17.2             | 33.4                            | 0.03                  | 0.47           | 5.33             | 2.6   | 56.2                            | 0.05                  | 0.8            | 14               | 4.38  |
| 160-3 | 0.1      | 41               | 29.3                            | 0.05                  | 0.68           | 11               | 3.8   | 49.7                            | 0.08                  | 1.17           | 29.5             | 6.46  |
| 200-3 | 0.15     | 29               | 30.7                            | 0.07                  | 0.54           | 5.36             | 6     | 52.1                            | 0.13                  | 0.92           | 14.1             | 10.17 |
| 250-3 | 0.25     | 31.2             | 30.5                            | 0.12                  | 0.59           | 6.23             | 9.93  | 51.6                            | 0.21                  | 1.02           | 16.2             | 16.8  |
| 315-3 | 0.39     | 35               | 30.2                            | 0.19                  | 0.69           | 8.28             | 15.3  | 51                              | 0.32                  | 1.17           | 21.4             | 25.87 |
| 400-3 | 0.63     | 36.3             | 30.3                            | 0.03                  | 0.74           | 10.10            | 24.74 | 50.8                            | 0.51                  | 1.26           | 26.1             | 41.6  |

Coil calculation 3 rows













## **CWK** Water-cooling battery for circular ducts

Casing of galvanised sheet steel with copper tubes and aluminium fins. Inspection covers for easy cleaning and maintenance.

Connection sleeves with rubber seal.

Max operating temperature 150 °C

Max operating pressure 1,6 MPa (16Bar)



\* Condensate drain

| CWK       | øD  | В   | Н   | ødy | F   | G  | K   | L   | kg   |
|-----------|-----|-----|-----|-----|-----|----|-----|-----|------|
| 100-3-2.5 | 100 | 251 | 180 | 10  | 100 | 40 | 276 | 356 | 4.4  |
| 125-3-2.5 | 125 | 326 | 255 | 10  | 175 | 40 | 276 | 356 | 6.5  |
| 160-3-2,5 | 160 | 326 | 255 | 10  | 175 | 40 | 276 | 356 | 6.7  |
| 200-3-2.5 | 200 | 411 | 330 | 22  | 250 | 40 | 276 | 356 | 9.4  |
| 250-3-2.5 | 250 | 486 | 405 | 22  | 325 | 40 | 276 | 356 | 11   |
| 315-3-2.5 | 315 | 560 | 504 | 22  | 400 | 40 | 276 | 356 | 14.3 |
| 400-3-2.5 | 400 | 710 | 529 | 22  | 425 | 65 | 330 | 460 | 19.5 |



| CWK       | Air flow | Air speed | Pressure<br>drop | Air before | Air before | Air after | Capacity | Water Flow | Water<br>Pressure<br>drop |
|-----------|----------|-----------|------------------|------------|------------|-----------|----------|------------|---------------------------|
|           | (m³/h)   | m/s       | (Pa)             | (°C)       | (% RH)     | (°C)      | (kW)     | (l/s)      | (kPa)                     |
|           | 54       | 2         | 7                | 25         | 50         | 14.3      | 0.2      | 0.01       | < 0.5                     |
|           | 54       | 2         | 7                | 30         | 45         | 15.8      | 0.4      | 0.01       | 1                         |
| 100-3-2.5 | 100      | 3.5       | 22               | 25         | 50         | 16.4      | 0.3      | 0.01       | 1                         |
| 100-5-2.5 | 100      | 3.5       | 22               | 30         | 45         | 18.5      | 0.5      | 0.02       | 2                         |
|           | 145      | 5         | 58               | 25         | 50         | 17.5      | 0.4      | 0.02       | 1                         |
|           | 145      | 5         | 58               | 30         | 45         | 20.0      | 0.6      | 0.02       | 3                         |
|           | 85       | 2         | 3                | 25         | 50         | 12.6      | 0.5      | 0.02       | 3                         |
|           | 85       | 2         | 3                | 30         | 45         | 13.5      | 0.7      | 0.03       | 5                         |
| 175 2 7 5 | 150      | 3         | 9                | 25         | 50         | 14.5      | 0.7      | 0.03       | 5                         |
| 123-3-2.5 | 150      | 3         | 9                | 30         | 45         | 15.7      | 1.1      | 0.04       | 10                        |
|           | 215      | 4.5       | 18               | 25         | 50         | 15.6      | 0.8      | 0.03       | 7                         |
|           | 215      | 4.5       | 18               | 30         | 45         | 17.0      | 1.4      | 0.05       | 16                        |
|           | 145      | 2         | 9                | 25         | 50         | 14.4      | 0.7      | 0.03       | 4                         |
|           | 145      | 2         | 9                | 30         | 45         | 15.6      | 1.0      | 0.04       | 10                        |
| 160-3-2.5 | 250      | 3.5       | 24               | 25         | 50         | 16.1      | 0.9      | 0.04       | 8                         |
| 100-5-2.5 | 250      | 3.5       | 24               | 30         | 45         | 17.4      | 1.5      | 0.06       | 20                        |
|           | 355      | 5         | 45               | 25         | 50         | 17.0      | 1.1      | 0.04       | 11                        |
|           | 355      | 5         | 45               | 30         | 45         | 18.4      | 1.3      | 0.08       | 32                        |
|           | 225      | 2         | 6                | 25         | 50         | 14.1      | 1.0      | 0.05       | 2                         |
|           | 225      | 2         | 6                | 30         | 45         | 15.3      | 1.6      | 0.06       | 5                         |
| 200-3-2.5 | 390      | 3.5       | 17               | 25         | 50         | 15.9      | 1.4      | 0.06       | 4                         |
| 200-5-2.5 | 390      | 3.5       | 17               | 30         | 45         | 17.3      | 2.3      | 0.09       | 9                         |
|           | 555      | 5         | 33               | 25         | 50         | 16.9      | 1.7      | 0.07       | 5                         |
|           | 555      | 5         | 33               | 30         | 45         | 18.4      | 3.1      | 0.12       | 15                        |
|           | 360      | 2         | 6                | 25         | 50         | 14.2      | 1.6      | 0.06       | 2                         |
|           | 360      | 2         | 6                | 30         | 45         | 15.4      | 2.5      | 0.10       | 5                         |
| 250-3-2 5 | 630      | 3.5       | 18               | 25         | 50         | 16.0      | 2.2      | 0.09       | 4                         |
| 250 5 2.5 | 630      | 3.5       | 18               | 30         | 45         | 17.3      | 3.8      | 0.15       | 10                        |
|           | 900      | 5         | 34               | 25         | 50         | 17.0      | 2.7      | 0.11       | 6                         |
|           | 900      | 5         | 34               | 30         | 45         | 18.2      | 5.1      | 0.20       | 17                        |
|           | 560      | 2         | 7                | 25         | 50         | 14.5      | 2.4      | 0.10       | 3                         |
|           | 560      | 2         | 7                | 30         | 45         | 15.4      | 3.9      | 0.16       | 7                         |
| 315-3-2.5 | 985      | 3.5       | 20               | 25         | 50         | 16.1      | 3.4      | 0.13       | 5                         |
|           | 985      | 3.5       | 20               | 30         | 45         | 17.2      | 6.1      | 0.24       | 14                        |
|           | 1410     | 5         | 39               | 25         | 50         | 17.0      | 4.3      | 0.17       | 8                         |
|           | 1410     | 5         | 39               | 30         | 45         | 18.1      | 8.3      | 0.33       | 25                        |
|           | 900      | 2         | 9                | 25         | 50         | 15.2      | 3.4      | 0.14       | 2                         |
|           | 900      | 2         | 9                | 30         | 45         | 16.3      | 5.8      | 0.23       | 5                         |
| 400-3-2.5 | 1590     | 3.5       | 25               | 25         | 50         | 16.8      | 4.8      | 0.19       | 4                         |
|           | 1590     | 3.5       | 25               | 30         | 45         | 17.8      | 9.3      | 0.37       | 12                        |
|           | 2280     | 5         | 49               | 25         | 50         | 17.6      | 6.1      | 0.24       | 6                         |
|           | 2280     | 5         | 49               | 30         | 45         | 18.6      | 12.8     | 0.51       | 22                        |





## **VBR** Water-heating coil for rectangular ducts

Water-heating coil for heating air in ventilation systems with rectangular ducts. Hot dip galvanized casing, heat transmission element with copper tubes and aluminium fins. In cold conditions, a frost protection device with sensor should be fitted to reduce the risk of damage from freezing. The water-heating coil can be installed in a horizontal duct.



- F Thread G 1/4
- G Airing
- H Water out
- I Connection for immersion sensor
- J Water in
- K Draining

| VBR     | А   | c/c A | В   | c/c B | E     | kg   |
|---------|-----|-------|-----|-------|-------|------|
| 40-20-2 | 438 | 420   | 238 | 220   | R¾''  | 5.5  |
| 50-25-2 | 538 | 520   | 288 | 270   | R¾''  | 7    |
| 50-30-2 | 538 | 520   | 338 | 320   | R¾''  | 8    |
|         | А   | c/c A | В   | c/c B | E     | kg   |
| 40-20-4 | 438 | 420   | 238 | 220   | R¾''  | 7    |
| 50-25-4 | 538 | 520   | 288 | 270   | R¾''  | 9    |
| 60-35-4 | 638 | 620   | 388 | 370   | R 1"  | 13   |
|         | А   | c/c A | В   | c/c B | E     | kg   |
| 70-40-3 | 738 | 720   | 438 | 420   | R 1'' | 15.5 |

Max. operating temperature

Max. operating pressure, at water temp. 100°C 16 bar Max. operating pressure, at water temp. 150°C 10 bar

VBR XX-XX-2 = Two pipe rows VBR XX-XX-4 = Four pipe rows VBR XX-XX-3 = Three pipe rows



| VBR     | Water temp.<br>(in/out) | Air Flow | Air<br>Pressure drop | ΔΤ   | Capacity | Water Flow | Water<br>Pressure drop |
|---------|-------------------------|----------|----------------------|------|----------|------------|------------------------|
|         | (°C)                    | (m³/h)   | (Pa)                 | (K)  | (kW)     | (l/s)      | (kPa)                  |
| 40-20-2 | 60/40                   | 400      | 9                    | 18.5 | 2.7      | 0.03       | 0.5                    |
| 40-20-2 | 60/40                   | 1000     | 48                   | 12.7 | 4.6      | 0.06       | 1                      |
| 40-20-4 | 60/40                   | 400      | 18                   | 29.5 | 4.3      | 0.05       | 0.5                    |
| 40-20-4 | 60/40                   | 1000     | 96                   | 19.5 | 7.1      | 0.09       | 0.5                    |
| 40-20-2 | 80/60                   | 400      | 9                    | 32.8 | 4.7      | 0.06       | 1                      |
| 40-20-2 | 80/60                   | 1000     | 48                   | 24.5 | 8.9      | 0.11       | 2                      |
| 40-20-4 | 80/60                   | 400      | 18                   | 46.3 | 6.7      | 0.08       | 0.5                    |
| 40-20-4 | 80/60                   | 1000     | 96                   | 38.9 | 14.0     | 0.17       | 1                      |
| 50-25-2 | 60/40                   | 600      | 8                    | 21.7 | 4.7      | 0.06       | 1                      |
| 50-25-2 | 60/40                   | 1200     | 29                   | 18.2 | 7.9      | 0.10       | 2                      |
| 50-25-4 | 60/40                   | 600      | 16                   | 33.1 | 7.2      | 0.09       | 0.5                    |
| 50-25-4 | 60/40                   | 1200     | 59                   | 28.4 | 12.3     | 0.15       | 1                      |
| 50-25-2 | 80/60                   | 600      | 8                    | 36.5 | 7.9      | 0.10       | 2                      |
| 50-25-2 | 80/60                   | 1200     | 29                   | 28.6 | 12.4     | 0.15       | 4                      |
| 50-25-4 | 80/60                   | 600      | 16                   | 54.5 | 11.8     | 0.14       | 1                      |
| 50-25-4 | 80/60                   | 1200     | 59                   | 45.9 | 19.9     | 0.24       | 3                      |
| 60-35-2 | 60/40                   | 1200     | 11                   | 18.7 | 8.1      | 0.10       | 0.5                    |
| 60-35-2 | 60/40                   | 3000     | 61                   | 15.0 | 16.3     | 0.20       | 2                      |
| 60-35-4 | 60/40                   | 1200     | 23                   | 34.2 | 14.8     | 0.18       | 1                      |
| 60-35-4 | 60/40                   | 3000     | 123                  | 28.1 | 30.4     | 0.37       | 4                      |
| 60-35-2 | 80/60                   | 1200     | 11                   | 33.9 | 14.7     | 0.18       | 1                      |
| 60-35-2 | 80/60                   | 3000     | 61                   | 24.1 | 26.1     | 0.32       | 3                      |
| 60-35-4 | 80/60                   | 1200     | 23                   | 53.6 | 23.2     | 0.28       | 3                      |
| 60-35-4 | 80/60                   | 3000     | 123                  | 41.5 | 45.0     | 0.55       | 8                      |
| 70-40-2 | 60/40                   | 2000     | 31                   | 20.1 | 14.5     | 0.18       | 1                      |
| 70-40-2 | 60/40                   | 4000     | 94                   | 16.0 | 23.2     | 0.28       | 1                      |
| 70-40-3 | 60/40                   | 2000     | 46                   | 24.7 | 17.8     | 0.22       | 0.5                    |
| 70-40-3 | 60/40                   | 4000     | 139                  | 21.1 | 30.5     | 0.37       | 1                      |
| 70-40-2 | 80/60                   | 2000     | 31                   | 34.7 | 25.1     | 0.31       | 1                      |
| 70-40-2 | 80/60                   | 4000     | 94                   | 25.1 | 36.3     | 0.44       | 3                      |
| 70-40-3 | 80/60                   | 2000     | 46                   | 45.4 | 32.8     | 0.40       | 1                      |
| 70-40-3 | 80/60                   | 4000     | 139                  | 34.4 | 49.7     | 0.61       | 2                      |

Coil calculation

Data based on supply air temperature of 0°C.





## **RB** Duct heater for rectangular ducts

Manufactured from aluzinc coated sheet steel with a heating element in stainless steel. The heater has integral overheating protection with a manual reset function. Suitable for control by room thermostat or TTC. The minimum air volume is based on a minimum air velocity of 1.5 m/s. These duct heaters are designed for a maximum output air temperature of 40°C.



| DD       | Power | Voltage | Current | Min. | air flow | Weight |
|----------|-------|---------|---------|------|----------|--------|
| ND       | (mm)  | (kW)    | (V)     | (A)  | (m³/h)   | (kg)   |
| 40-20/9  | 9     | 400     | 3~      | 13   | 450      | 9.2    |
| 40-20/15 | 15    | 400     | 3~      | 22   | 450      | 16     |
| 50-25/15 | 15    | 400     | 3~      | 22   | 700      | 12.7   |
| 50-25/22 | 22    | 400     | 3~      | 31.8 | 700      | 19.9   |
| 60-35/27 | 27    | 400     | 3~      | 39   | 1000     | 23.1   |
| 60-35/45 | 45    | 400     | 3~      | 65   | 1000     | 30.6   |
| 70-40/27 | 27    | 400     | 3~      | 39   | 1600     | 23.1   |
| 70-40/45 | 45    | 400     | 3~      | 65   | 1600     | 30.3   |

| RB         | В   | н   | D   |
|------------|-----|-----|-----|
| 40-20/9-1  | 400 | 200 | 370 |
| 40-20/15-1 | 400 | 200 | 500 |
| 50-25/15-1 | 500 | 250 | 370 |
| 50-25/22-2 | 500 | 250 | 500 |
| 60-35/27-2 | 600 | 350 | 370 |
| 60-35/45-3 | 600 | 350 | 500 |
| 70-40/27-2 | 700 | 400 | 370 |
| 70-40/45-3 | 700 | 400 | 370 |



F1 Ochrana proti prehriatiu, automatická (60°C) F2 Ochrana proti prehriatiu, ručná (120°C) F2 F1

| 15/14/13<br>15 kW<br>19,9 22,6 Ω<br>19,9 22,6 A | 12 11 10<br>15 kW<br>19,9 22,6 Ω<br>19,9 22,6 A   | 987<br>15 kW<br>19,9 22,6 Ω<br>19,9 22,6 A   | 654321      | RB 70-40/45-3<br>RB 60-35/45-3 |
|-------------------------------------------------|---------------------------------------------------|----------------------------------------------|-------------|--------------------------------|
|                                                 | 121110<br>17 kW<br>17,5 19,9 Ω<br>22,5 25,6 A     | 987<br>17 kW<br>17,5 19,9 Ω<br>22,5 25,6 A   | 654321      | RB 60-30/34-2                  |
|                                                 | 12 11 10<br>13,5 kW<br>22,1 25,1 Ω<br>17,9 20,3 A | 987<br>13,5 kW<br>22,1 25,1 Ω<br>17,9 20,3 A | 654321      | RB 70-40/27-2<br>RB 60-35/27-2 |
|                                                 | 12 11 10<br>11 kW<br>27,1 30,8 Ω<br>14,6 16,5 A   | 987<br>11 kW<br>27,1 30,8 Ω<br>14,6 16,5 A   | 6 5 4 3 2 1 | RB 50-25/22-2                  |
|                                                 |                                                   | 987<br>15 kW<br>19,9 22,6 Ω<br>19,9 22,6 A   | 654321      | RB 50-25/15-1<br>RB 40-20/15-1 |
|                                                 |                                                   | 9 8 7<br>9 kW<br>33,1 37,6 Ω<br>11,9 13,5 A  | 654321      | RB 40-20/9-1                   |

Ĺ.

654

987



## **PGK** Cold water coil for rectangular ducts



Casing from galvanised sheet steel. Water-battery from copper tubes and aluminium fins. Air vent and drain valve included. Drip pan from stainless steel and condensate connection (R<sup>1</sup>/<sub>2</sub>"). Max working pressure 1.6 MPa (16 bar). For water connection left or right, Two inspection covers for cleaning and maintenance. Droplet separator DE as an accessory regardless of air direction. Recommended for air velocities from 3m/s





| PGK           | В   | Н   | I.  | К   | М  | Ν     |
|---------------|-----|-----|-----|-----|----|-------|
| 400x200-3-2.0 | 438 | 238 | 70  | 176 | 43 | R 3/4 |
| 500x250-3-2.0 | 538 | 288 | 120 | 176 | 43 | R 3/4 |
| 600x350-3-2   | 638 | 388 | 220 | 176 | 43 | R 3/4 |
| 700x400-3-2.0 | 738 | 438 | 250 | 170 | 55 | R1    |



| PGK           | Air flow | Air<br>velocity | Air<br>Pressure<br>drop | Air<br>before | Air<br>before | Air<br>after | Capacity | Water<br>Flow | Water<br>Pressure<br>drop |
|---------------|----------|-----------------|-------------------------|---------------|---------------|--------------|----------|---------------|---------------------------|
|               | (m3/h)   | m/s             | (Pa)                    | (°C)          | (% RH)        | (°C)         | (kW)     | (I/s)         | (kPa)                     |
| 400x200-3-2.0 | 576      | 2               | 31                      | 25            | 50            | 17.0         | 1.53     | 0.06          | 1                         |
|               | 576      | 2               | 36                      | 30            | 45            | 19.0         | 2.50     | 0.10          | 3                         |
|               | 864      | 3               | 66                      | 25            | 50            | 18.4         | 1.89     | 0.08          | 2                         |
|               | 864      | 3               | 72                      | 30            | 45            | 20.2         | 3.26     | 0.13          | 5                         |
|               | 1152     | 4               | 113                     | 25            | 50            | 19.2         | 2.20     | 0.09          | 2                         |
|               | 1152     | 4               | 119                     | 30            | 45            | 20.8         | 4.15     | 0.17          | 7                         |
| 500x250-3-2.0 | 900      | 2               | 31                      | 25            | 50            | 17.0         | 2.38     | 0.09          | 2                         |
|               | 900      | 2               | 36                      | 30            | 45            | 18.6         | 4.27     | 0.17          | 5                         |
|               | 1350     | 3               | 66                      | 25            | 50            | 18.2         | 3.02     | 0.12          | 3                         |
|               | 1350     | 3               | 72                      | 30            | 45            | 19.4         | 6.16     | 0.25          | 9                         |
|               | 1800     | 4               | 113                     | 25            | 50            | 18.9         | 3.61     | 0.14          | 4                         |
|               | 1800     | 4               | 119                     | 30            | 45            | 19.8         | 8.34     | 0.33          | 15                        |
| 600x350-3-2   | 1512     | 2               | 31                      | 25            | 50            | 17.3         | 3.86     | 0.15          | 1                         |
|               | 1512     | 2               | 36                      | 30            | 45            | 19.0         | 6.64     | 0.26          | 3                         |
|               | 2268     | 3               | 66                      | 25            | 50            | 18.6         | 4.82     | 0.19          | 2                         |
|               | 2268     | 3               | 72                      | 30            | 45            | 19.8         | 9.48     | 0.38          | 6                         |
|               | 3024     | 4               | 113                     | 25            | 50            | 19.3         | 5.72     | 0.23          | 3                         |
|               | 3024     | 4               | 119                     | 30            | 45            | 20.1         | 13.05    | 0.52          | 11                        |
| 700x400-3-2.0 | 1920     | 2               | 47                      | 25            | 50            | 17.1         | 5.02     | 0.20          | 1                         |
|               | 1920     | 2               | 55                      | 30            | 45            | 18.1         | 8.66     | 0.35          | 3                         |
|               | 2880     | 3               | 91                      | 25            | 50            | 18.5         | 6.20     | 0.25          | 1                         |
|               | 2880     | 3               | 100                     | 30            | 45            | 18.8         | 12.94    | 0.52          | 4                         |
|               | 3840     | 4               | 142                     | 25            | 50            | 19.3         | 7.26     | 0.29          | 2                         |
|               | 3840     | 4               | 151                     | 30            | 45            | 19.0         | 18.41    | 0.73          | 8                         |

Coil calculation, water temp 6/12°C



## **DXRE** Rectangular duct cooling coil (DX)



- Same model for left-hand or right-hand installation (reversible coil)
- Stainless steel condensate drip tray. A droplet eliminator can be fitted regardless of the direction of air flow
- Easily removable drip tray to simplify cleaning and inspection.

DXRE is recommended for central or decentral (zones) cooling of individual rooms. The DXRE is intended for installation in a horizontal duct, with the air flow in either direction (reversible coil).

We recommend that a DE droplet eliminator (accessory) should be installed on theoutlet side of the coil if the air velocity is in excess of 2.5 m/s. This prevents water droplets being entrained by the air flow out into the duct system. Maximum operating pressure 2.4 MPa (24 Bar).





## DE - Droplet separator



Droplet separator for duct cooling coils Droplet separator DE must be ordered extra. Recommended for air velocities from 2.5 m/s

| DXRE                                                    | В                   | н                   | I                          | 0                      | К                         |
|---------------------------------------------------------|---------------------|---------------------|----------------------------|------------------------|---------------------------|
| 400x200-3-2.5                                           | 438                 | 238                 | 70                         | 100                    | 165                       |
| 500x250-3-2.5                                           | 558                 | 288                 | 120                        | 30                     | 165                       |
| 600x350-3-2.5                                           | 638                 | 388                 | 220                        | 30                     | 165                       |
| 700x400-3-2.5                                           | 738                 | 438                 | 250                        | 30                     | 160                       |
|                                                         |                     |                     |                            |                        |                           |
| DXRE                                                    | М                   | N                   | S                          | R                      | C                         |
| DXRE<br>400x200-3-2.5                                   | M<br>60             | N<br>19             | <b>S</b><br>90             | R<br>105               | С<br>1/2"                 |
| DXRE<br>400x200-3-2.5<br>500x250-3-2.5                  | M<br>60<br>60       | N<br>19<br>22       | <b>S</b><br>90<br>90       | <b>R</b><br>105<br>105 | C<br>1/2"<br>1/2"         |
| DXRE<br>400x200-3-2.5<br>500x250-3-2.5<br>600x350-3-2.5 | M<br>60<br>60<br>60 | N<br>19<br>22<br>22 | <b>S</b><br>90<br>90<br>90 | R<br>105<br>105<br>105 | C<br>1/2"<br>1/2"<br>5/8" |



| DXRE          | Air flow | Air<br>pressure<br>drop | Air in | Air in | Air out                                                                             | Output                                                                                                                                                                                                                                                                                                                | Refrigerant<br>flow                                                                                                                                                                                                                                                                                                                                                                                               | Refrigerant<br>Pressure<br>drop |
|---------------|----------|-------------------------|--------|--------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|               | (m3/h)   | (Pa)                    | (°C)   | (% RH) | (°C)                                                                                | (kW)                                                                                                                                                                                                                                                                                                                  | (kg/h)                                                                                                                                                                                                                                                                                                                                                                                                            | (kPa)                           |
|               | 575      | 32                      | 25     | 50     | 15,8                                                                                | 2,2                                                                                                                                                                                                                                                                                                                   | Refrigerant<br>flow       V)     (kg/h)       2     51       2     75       7     63       9     90       8     65       4     104       4     80       118     99       3     147       4     103       1     165       1     118       2     99       3     147       4     103       1     165       1     145       1     192       5     164       2     189       4     242       5     189       4     272 | 3                               |
|               | 575      | 36                      | 30     | 50     | 18,8                                                                                | 3,2                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,1                             |
| 400,200 2 2 5 | 865      | 60                      | 25     | 50     | 16,9                                                                                | 2,7                                                                                                                                                                                                                                                                                                                   | 63                                                                                                                                                                                                                                                                                                                                                                                                                | 4,3                             |
| 4008200-3-2.5 | 865      | 68                      | 30     | 50     | 20,4                                                                                | 3,9                                                                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                | 8,7                             |
|               | 1150     | 91                      | 25     | 50     | 17,5                                                                                | 2,8                                                                                                                                                                                                                                                                                                                   | 65                                                                                                                                                                                                                                                                                                                                                                                                                | 4,9                             |
|               | 1150     | 107                     | 30     | 50     | 21,2                                                                                | 4,4                                                                                                                                                                                                                                                                                                                   | 104                                                                                                                                                                                                                                                                                                                                                                                                               | 11,3                            |
|               | 900      | 32                      | 25     | 50     | 15,8                                                                                | 3,4                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                                                                                | 3,2                             |
|               | 900      | 36                      | 30     | 50     | 18,7                                                                                | 5                                                                                                                                                                                                                                                                                                                     | 118                                                                                                                                                                                                                                                                                                                                                                                                               | 6,6                             |
|               | 1350     | 60                      | 25     | 50     | 16,9                                                                                | 4,2                                                                                                                                                                                                                                                                                                                   | 99                                                                                                                                                                                                                                                                                                                                                                                                                | 5                               |
| 500X250-3-2.5 | 1350     | 69                      | 30     | 50     | 50 21,2 4,4 104   50 15,8 3,4 80   50 18,7 5 118   50 16,9 4,2 99   50 20,1 6,3 147 | 9,8                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
|               | 1800     | 92                      | 25     | 50     | 18                                                                                  | 4,4                                                                                                                                                                                                                                                                                                                   | 103                                                                                                                                                                                                                                                                                                                                                                                                               | 5,2                             |
|               | 1800     | 108                     | 30     | 50     | 21,2                                                                                | 7,1                                                                                                                                                                                                                                                                                                                   | 165                                                                                                                                                                                                                                                                                                                                                                                                               | 12,1                            |
|               | 1510     | 32                      | 25     | 50     | 15,5                                                                                | 6                                                                                                                                                                                                                                                                                                                     | Refrigerant<br>flow       (kg/h)       51       75       63       90       65       104       80       118       99       147       103       165       131       192       164       242       189                                                                                                                                                                                                               | 7,5                             |
|               | 1510     | 36                      | 30     | 50     | 18,4                                                                                | Output     Refrigera<br>flow       (kW)     (kg/h)       2,2     51       3,2     75       2,7     63       3,9     90       2,8     65       4,4     104       3,4     80       5     118       4,2     99       6,3     147       4,4     103       7,1     165       6     131       8,7     192       7,5     164 | 192                                                                                                                                                                                                                                                                                                                                                                                                               | 12,8                            |
|               | 2270     | 62                      | 25     | 50     | 16,7                                                                                | 7,5                                                                                                                                                                                                                                                                                                                   | 164                                                                                                                                                                                                                                                                                                                                                                                                               | 10,1                            |
| 0008350-3-2.5 | 2270     | 70                      | 30     | 50     | 19,8                                                                                | 11                                                                                                                                                                                                                                                                                                                    | 242                                                                                                                                                                                                                                                                                                                                                                                                               | 18,6                            |
|               | 3025     | 97                      | 25     | 50     | 17,4                                                                                | 8,6                                                                                                                                                                                                                                                                                                                   | 189                                                                                                                                                                                                                                                                                                                                                                                                               | 12,5                            |
|               | 3025     | 110                     | 30     | 50     | 21                                                                                  | 12,4                                                                                                                                                                                                                                                                                                                  | 272                                                                                                                                                                                                                                                                                                                                                                                                               | 22,6                            |
|               | 2015     | 40                      | 25     | 50     | 14,7                                                                                | 8,6                                                                                                                                                                                                                                                                                                                   | Refrigerant<br>flow       (kg/h)       51       75       63       90       65       104       80       118       99       147       103       165       131       192       164       242       189       272       188       274                                                                                                                                                                                 | 7,6                             |
|               | 2015     | 44                      | 30     | 50     | 17,4                                                                                | 12,5                                                                                                                                                                                                                                                                                                                  | 274                                                                                                                                                                                                                                                                                                                                                                                                               | 13,3                            |
| 700-400 2 2 5 | 3020     | 72                      | 25     | 50     | 16,3                                                                                | 9,6                                                                                                                                                                                                                                                                                                                   | 211                                                                                                                                                                                                                                                                                                                                                                                                               | 9                               |
| 700x400-3-2.5 | 3020     | 83                      | 30     | 50     | 19,3                                                                                | 14,7                                                                                                                                                                                                                                                                                                                  | 323                                                                                                                                                                                                                                                                                                                                                                                                               | 17,4                            |
|               | 4030     | 112                     | 25     | 50     | 16,5                                                                                | 11,2                                                                                                                                                                                                                                                                                                                  | 246                                                                                                                                                                                                                                                                                                                                                                                                               | 11,3                            |
|               | 4030     | 130                     | 30     | 50     | 20,2                                                                                | 16,9                                                                                                                                                                                                                                                                                                                  | 370                                                                                                                                                                                                                                                                                                                                                                                                               | 20                              |

Coil calculation Refrigerant R407C, 5 °C

| Refrigerant | R 410A | R 134A | R 404A | R 507A |
|-------------|--------|--------|--------|--------|
| Factor      | 1,01   | 0,93   | 1,00   | 0,97   |

Recalculation of the basic value with different refrigerants



Pressure drop DE, droplet eliminator



# Product range

Systemair has an extensive range of ventilation products, the majority of which are fans and air handling units. Other products include a wide range of air terminal devices for various applications. These products are installed in a variety of locations, including homes, offices, healthcare premises, shops, industrial buildings, tunnels, parking garages, training facilities, sports centres. The most common usage is comfort ventilation, but safety ventilation in various forms is also an important market. Smoke gas ventilation and tunnel ventilation are two examples.



### Fans

Systemair is one of the world's largest suppliers of fans for use in various types of property.

Our range includes everything from duct fans with a round connection – the company's original product to rectangular duct fans, roof fans, axial fans, explosion-proof fans, and smoke gas fans.

These fans can be supplied in sizes suitable for everything from ducts with a diameter of just 100 mm to large road tunnel fans. All our fans have been developed to comply with stringent requirements and are characterised by user-friendliness, a high level of quality and a long service life.

### Circular duct fans

Duct fans with a circular connection.



**Radial fans** Single-inlet radial fans.



#### Rectangular duct fans

Duct fans with a rectangular connection.



### Box fans

For extract air systems that transport normal or high-temperature media.



#### **Axial fans**

Axial fans for duct connection or wall mounting

Roof fans

Roof fans with a circular or square connection.



Explosion-proof fans

Explosion-proof fans for duct, roof and axial installations.



### Jet fans

The jet fan range includes products for garages and road and rail tunnels.





#### Thermo fans

Systemair supplies high temperature fans that can withstand conditions of up to 600°C for 120 minutes





### Fire safety ventilation

Systemair produces fans, dampers and control equipment for protection against smoke and fire certified for use during normal operation and in the event of a fire. The axial fans are certified for installation inside or outside fire risk areas.

#### Smoke gas fans

High-capacity fans for evacuation of smoke gases.



**Fire dampers** Dampers that reduce the spread of smoke and fire.



### **Residental ventilation**

Complete energy-efficient air handling units with heat recovery and built-in control systems. Designed to be mounted over the cooker, on walls or horizontally in attics.

#### **Residential units**

For homes with living areas of 60-320  $\ensuremath{\mathsf{m}}^2.$ 





Nozzle air devices

**Cooker hoods** 



Optimum air distribution for rooms.

### Air terminal devices

Systemair's range also includes a wide selection of air terminal devices for all possible environments and positions. Development and manufacture take place at a modern factory in Slovakia. Supply, extract & transfer air terminal devices

For mounting in ceilings or walls.



**Supply & extract air ventilators** For mounting in ceilings and walls





**Duct products** Dampers, plenum boxes, and duct accessories.





