

Liebert[®] PDX 40-120 kW Indoor Room Cooling Units with Modulating Capacity A/W/F/D/H Versions

PRODUCT DOCUMENTATION

Introduction

Liebert[®] PDX

Liebert[®] PDX direct expansion cooling unit is equipped with the most advanced industry technology, guaranteeing precise cooling of data centers and server rooms.

It comes filled with R410A refrigerant which allows the unit to reach significant levels of efficiency. This series offers units with gross rated cooling capacity from 40 to 120 kW.

Liebert[®] **PDX** range comes equipped with latest EC Fans technology thus ensuring top energy efficiency. The complete unit design has furthermore been optimized with enhanced heat exchangers, delivering a high level of overall efficiency and cooling capacity.

In addition, Liebert® PDX also includes as option unique Digital Scroll technology, making it the ideal, scalable cooling system able to expand with evolving business needs. The Digital Scroll modulating capability greatly contributes to the efficiency levels reached by Liebert® PDX with a 50 kW unit (inclusive of Digital Scroll) consuming as little as a 10 kW unit, thus delivering advantageous energy savings.

All Liebert[®] PDX's components have been optimized to provide an extremely efficient solution both for conventional computer rooms and for infrastructures facing the challenges of modern IT applications.

Two type of units are available: Liebert[®] PDX **Standard Height** (height 1970mm), and Liebert[®] PDX **Extended Height** (total height 2570mm) that it will be supplied in two modules connectable on the field. To allow maximum versatility and high efficiency both type of Liebert[®] PDX are available in four air discharge versions: **Upflow, Downflow Frontal** and **Downflow Up** with fans module installed above the raised floor, and version **Downflow Down** with fans module installed in the raised floor.

The new Liebert[®] PDX range is available across a full range of cooling modes: direct expansion, Indirect water Freecooling, Direct Air Freecooling and dual fluid redundancy cooling.

Liebert[®] PDX Standard Height

Liebert® PDX Extended Height

Contents

The Quality Management System of Emerson Network Power S.r.l. High Performance Air Conditioning has been approved by Lloyd's Register Quality Assurance to the standard ISO 9001:2008

The product conforms to European Union directives 2006/42/EC; 2004/108/EC; 2006/95/EC; 97/23/EC. Units are supplied complete with a Test Certificate Conformity Declaration and Component List.

Liebert[®] PDX units are CE marked as they comply with the European directives concerning mechanical, electrical, electromagnetic and pressure equipment safety.

Liebert[®] PDX Top Efficiency 1 2 **Model Configuration Operating Range** 3 **Technical Data** 4 **Heat Rejection** 5 (through condenser) **Air Flow Characteristics** 6 Sound Pressure Level 7 **Technical Specifications** 8 **Filter Section** 9 **Microprocessor Controls** 10 Humidification 11 **Dimensional Data /** 12 **Connections** Refrigerant **Hydraulic** and 13 **Circuits** 14 **Accessories**

The new Liebert[®] PDX

Liebert[®] PDX is Emerson Network Power answer to the latest and the future Data Center needs. Data Center environment is growing constantly in terms of cooling needs. It is asking and will continue to increase its demand for cooling solutions that provide exactly what the servers need without wasting energy overcooling as well as avoiding hot spots, Liebert[®] PDX thanks to usage of Stage Coils is designed to maximize the efficiency at part loads.

In fact as the outside conditions change all year long, as well as considering common cooling redundancy the units work most of the time in part load. Liebert[®] PDX provides a top efficient solution at full load, and maximizes its benefit at part load conditions.

The presence of Digital Scroll is then an additional step to further improve the part load efficiency. Liebert[®] PDX has been designed to set new efficiency targets on Direct Expansion Data Center need applications.

Therefore all parts of common CRAC unit have been studied and optimized to provide a top efficient solution.

Smart AisleTM Solution – When Smart Means Efficient

Liebert[®] PDX as part of Smart AisleTM cooling solution is the best answer to ensure the right cooling minimizing the cooling operating costs.

Emerson Network Power's cold aisle containment solution, can achieve an energy saving of up to 65% higher than other manufacturers' cooling units with standard technology. The intelligent control of the Digital Scroll compressor's capacity together with accurate fan speed management, driven by cold aisle conditions, guarantees increased savings.

Smart mode is a control algorithm developed for Smart AisleTM applications (Cold Aisle containment) meeting the cooling and airflow needs of the servers without wasting a single Watt on unnecessary cooling or air movement.

Liebert[®] PDX with Digital Scroll delivers the exact level of required air temperature while the EC Fans manages the desired airflow. This ensures that only the necessary kilowatts of input power are used to cool the IT load. Units which include the Alco Electronic Expansion Valve are able to further increase overall system efficiency by reducing the condensing temperature during cooler seasons and at the same time preserving the Sensible Heat Ratio.

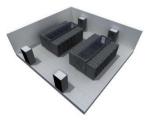
Enhanced Freecooling

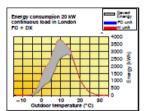
Liebert[®] PDX offers a full range of Freecooling solution that answers to all the different needs of the different sites application.

Indirect Water based Freecooling – The right cooling with the minimum consumption

Whenever the Critical application needs a complete separation between indoor and outdoor or the Humidity control band requirements are tight Liebert[®] PDX offers the possibility to exploit water based indirect freecooling. Thanks to the double coil (Freecooling water and Direct Expansion) the unit provides the highest saving match with full availability of the DX solution.

The usage of Stage Coil and Digital Scroll then allows maximizing the saving in mixed mode operation, so whenever the freecooling is not able to fully take the load the compressors can work just to complete the missing cooling needs.


Therefore Liebert[®] PDX Freecooling can provide extremely high energy saving granting the highest availability of the application.


Liebert[®] Economizer – Direct Freecooling for Data Centers

When the site allows for Direct freecooling application, and the Humidity control (still required as for most of Data Centers applications) band requirements can be enlarged to the limits of the ASHRAE (*ASHRAE: 2011 Thermal Guidelines for Data Processing Environments*) recommended zone, the Liebert[®] PDX offers the right solution for Data Centers.

Liebert[®] Economizer allows checking not only if the external air has the right temperature to start giving some partial freecooling benefits, but also to check if the humidity is on the right conditions.

Liebert[®] PDX Top Efficiency

In fact humidity control requires a relevant part of energy, therefore having an intelligent control, which allows using the external air only when it makes sense from all energy aspects, it is a key element for a Direct Freecooling for Data Center.

Liebert[®] PDX with Economizer solution allows maximizing direct freecooling benefits coupling the needed control of temperature and humidity, providing the full back up availability of the direct expansion solution.

Premium Fan Module – Technology for efficiency

The Premium Fan Module are the evolution of the EC fans technology. They are made of composite material. This new technology allows keeping the current high-strength of aluminum alloy adding the benefits of light weight and full flexibility on blade design of the new material. Liebert[®] PDX has been designed around these new fans in order to have the highest benefits from the new technology, translating the new Premium Fan Module into reduced noise levels as well as increased energy efficiency.

The high-level supervision of multiple units allows them to work

together as a single system to optimize room temperature and humidity. This is of particular importance when the EC Fan is considered. EC fan power consumption functions according to the square – cube law, so that having five units running at 80% instead of four at 100%, means the energy used from the fans of the entire group is reduced by 36%. iCOM manages the reduction of fan speed whenever operation at full capacity is not required.

Unit Aeraulic Design – A new way to look at aerodynamics

Aerodynamics is commonly associated with cars and motorbike racing or with flying aspects. With Liebert[®] PDX aerodynamics will be applied also high precision cooling design.

In fact, the internal design of Liebert[®] PDX has been deeply studied in order to optimize the aerodynamic impact of all the internal parts: coil shape, coil size, coil angle, electrical panel design, etc... This means a dramatically reduced internal air pressure drop that immediately becomes a benefit in terms of reduced unit power consumption.

Heat Exchanger Section: Stage Coil Net Sensible Capacity matters

Efficiency is a fundamental requirement in all applications today. Even more for technological applications where the operational costs are by far the most significant consideration. Sensible Heat Ratio (SHR) values of greater than 0.90 are required to reduce to a minimum the energy spent controlling humidity during normal operating conditions.


Heat exchanger design and a correct air distribution within the unit are two of the most important factors required to achieve optimum performance.

Efficiency is a fundamental requirement in all applications today. Even more for technological applications where the operational costs are by far the most significant consideration. Sensible Heat Ratio (SHR) values of greater than 0.90 are required to reduce to a minimum the energy spent controlling humidity during normal operating conditions.

Heat exchanger design and a correct air distribution within the unit are two of the most important factors required to achieve optimum performance.

Liebert[®] PDX units feature a very high coil heat exchanger surface respect to the exchanged power. Using the index [frontal Surface x Rows / refrigeration Power] values of over 100 mm²/W are obtained.

In dual circuit units, the dual stage coil increases the evaporator temperature maximizing the SHR and increasing the unit efficiency.

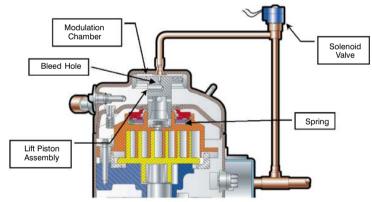
CONTOURS OF STATIC TEMPERATURE

At partial load, the efficiency is strongly increased, due to the use of the total amount of airflow and frontal coil surface: with non-staged coil system, only half heat exchanger frontal surface was interested by the thermal exchange.

Sophisticated design and development tools, such as Particle Image Velocimetry and Computational Fluid Dynamics are used by Emerson Network Power to identify the best components layout in order to achieve an even and pressure—equalized airflow distribution within the unit which optimizes the entire coil surface area in the heat exchanging process.Liebert[®] PDX units feature a very high coil heat exchanger surface respect to the exchanged power. Using the index [frontal Surface x Rows / refrigeration Power] values of over 100 mm²/W are obtained.

In dual circuit units, the dual stage coil increases the evaporator temperature maximizing the SHR and increasing the unit efficiency.

At partial load, the efficiency is strongly increased, due to the use of the total amount of airflow and frontal coil surface: with non-staged coil system, only half heat exchanger frontal surface was interested by the thermal exchange.


Sophisticated design and development tools, such as Particle Image Velocimetry and Computational Fluid Dynamics are used by Emerson Network Power to identify the best components layout in order to achieve an even and pressure-equalized airflow distribution within the unit which optimizes the entire coil surface area in the heat exchanging process.

Digital Scroll Compressor

Digital Scroll provides the necessary level of cooling by adjusting its delivery according to the heat load, thus ensuring constant, precise temperature levels.

The Digital Scroll operates in two stages – the "loaded state", when the solenoid valve is normally closed and "unloaded state", when the solenoid valve is open. During the loaded state the compressor operates like a Standard scroll and delivers full capacity and mass flow. However, during the unloaded state, there is no capacity and no mass flow through the compressor.

- This allows having a number of benefits in terms of Efficiency:
- Perfect match between Cooling Capacity and Heat Load.
- Lower power input at partial load.
- Possibility to size cooling system to overcome future heat load growth.
- Improved SHR once the compressor is modulating (due to better evaporating temperature)

Electronic Expansion Valve (EEV)

The valve is designed for modulating control of refrigerant circuits with highspeed and high precision. The EEV provides superior performance compared to a Thermostatic Expansion Valve (TXV), due to:

- Precise flow control
- Positioning time

EEV ensures a better control on super heating at the end of the evaporator, ensuring at the same time that compressor will never be filled by liquid from the 10% to 110% of its nominal capacity, instead a mechanical one cannot ensure it. It has to be calibrated and then it will work properly but only around the calibration point.

around the calibration point. This means that a TXV works better (i.e. better control, longer life) with a condensing pressure as much as possible constant. For such reason with TXV the condensing temperature is kept around 45°C as set point. But during the coldest period the condensing temperature can be lowered and the electronic expansion valve adapts to this new situation. This permits an increase of the cooling capacity of the unit, a decrease of the unit power input and so increase the energy efficiency of the entire Liebert[®] PDX unit.

Liebert[®] PDX allows having an option the EEV both on Standard Scroll and on Digital Scroll. The choice is driven by the application:

Liebert[®] PDX Top Efficiency

- Only temperature control or wide range or Humidity band T→In this case the EEV gives a great
 efficiency effects both with Standard and Digital Scroll technology. To get the biggest advantage,
 a different pressure set point can be used for the fan speed controller of the Liebert remote
 condenser.
- Close Humidity control → Often, even the TXV valve allows to get good results, mainly thanks to the Digital Scroll modulation.

Liebert[®] PDX serviceability

Attention to design detail means low operational costs including product maintenance through high levels of reliability and a service friendly design. As an example, all the crucial parts of the refrigeration circuit (i.e.: thermostatic valves, sight glasses and liquid line driers) are grouped together and accessible simply by opening the front door.

Easy maintenance

All components are easily accessible from the front of the room unit. The service compartment facilitates checking and setting of refrigeration circuit, without changing aeraulic conditions. The access to the compressor is possible even when the unit is operating by removing the front panel. The access to the fan is executed with the greatest care for easier interventions (maintenance and/or fan replacement). One very important feature, for example, is the possibility to check the total pressure drop of the high pressure piping using the schrader connections available in the front part of the machine.

Digit Nomenclature

The unit is fully defined by twenty two digits.

Digit 8 – Airflow

- Premium Fan Module L.
- 1 Basic Fan Module (Fix Speed)

Digit 9 – Main Power Supply 3 Single 400V / 3ph / 50 Hz + N

- т Single 380V / 3ph / 60Hz + N
- Single 460V / 3ph / 60Hz Δ

Digit 10 – Cooling System 6 Single Circuit Scroll R410A with TXV

- Single Circuit Digital Scroll R410A with TXV 7
- S Single Circuit Scroll R410A with EEV
- U Single Circuit Digital Scroll R410A with EEV
- Dual Circuit Scroll R410A with TXV 4
- т Dual Circuit Digital Scroll R410A with TXV
- W Dual Circuit Scroll R410A with EEV
- Х Dual Circuit Digital Scroll R410A with EEV

Digit 11 – Humidification

- None 0
- Н Infrared Humidifier
- U Ultra Sonic Humidifier
- S **Electrode Humidifier**

Digit 12 – Microprocessor Control 2 Inner Display only T sensor

- Inner Display TH sensor 3
- Ù Small Cold fire display T sensor
- В Small Cold fire display TH sensor
- Large Cold fire display T sensor С
- Ď Large Cold fire display TH sensor
- w Small Cold fire display T sensor (for extended UP units)
- Small Cold fire display TH sensor (for extended UP units) X Y Z
- Large Cold fire display T sensor (for extended UP units)
- Large Cold fire display TH sensor (for extended UP units)

Digit 13 – Heating & Re– Heating None 0

- Electric heating Std Capacity 1
- Electric heating High Capacity 2
- Hot Water Heating 4
- 6 Hot Gas Reheat
- El. heating Std Capacity + Hot Water Heating 8
- El. heating Std Capacity + Hot Gas Reheat Δ

Digit 14 – Air Filter Efficiency

- F5 (EU5) dust spot 1
- F5 (EU5) dust spot + Clogged Filter 3

- Digit 15 Condensing Control

 1
 Air Cooled or Water Cooled with Standard Pressure, 2
 way MBV
- 7 Water Cooled with Standard Pressure, 3 way MBV

Digit 16 – Colour

Black Emerson RAL 7021

Digit 17 – High Voltage Option D Standard Power Supply

- F Dual Power Supply Parallel + Magnetic circuit breaker for 10 A single phase 50Hz
- 2 Magnetic circuit breaker for 10 A single phase 50Hz
- Q Magnetic circuit breaker for 10 A three phases 50Hz
- 5 Condensate Pump
- 7 Magnetic circuit breaker for 10 A single phase, 50Hz, with Condensate Pump
- R Magnetic circuit breaker for 10 A three phases, 50Hz, with Condensate Pump
- G Dual Power Supply Alternate with ATS + Magnetic circuit breaker for 10 A single phase
- Dual Power Supply Alternate with ATS and UPS for iCOM + Magnetic circuit breaker for 10 A single phase breaker S for 10A single phase
- Dual Power Supply parallel + Magnetic circuit breaker for т 10A three phases
- U Dual Power Supply Alternate with ATS + Magnetic circuit breaker for 10A three phases
- Dual Power Supply Alternate with ATS and UPS for iCOM v + Magnetic circuit breaker for 10 A three phases

Digit 18 – Package Option

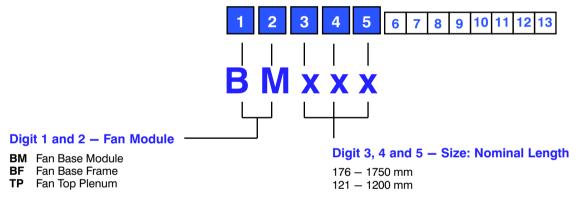
- 0 None
- S Predisposition for Smart Aisle (Predisposition for damper, Sensors, 3 position switch)
- F Predisposition for Economizer (sensors, predisposition for dampers)
- G Predisposition for Smart Aisle + Economizer
- Predisposition for damper Н
- L Predisposition for plenum installation

Model Configuration

Digit 19-Monitoring

- N No IS Housing
- 0 No Card
- 1 IS Web only
- 2 Two IS Web
- 3 IS485 only
- 4 Two IS485
- 5 IS Web & IS 485
- C SiteLink E card
- D SiteLink E plus IS Web card
- E SiteLink E plus IS485 card
- F IS-IPBML card
- G 2 x IS-IPBML card
- H IS-IPBML plus 1 x IS Web card
- J IS-IPBML plus 1 x IS485 card
- K IS-IPBML plus SiteLink E card

Digit 20- Sensors 0 None


Digit 21 – Packaging

- P PLP and Pallet
 C PLP and Wooden Crate
- S Seaworthy
- Digit 23 Special Requirements
- A Standard Emerson Network Power
- X Special Emerson Network Power

Digit Nomenclature (Fan Module)

Only for Extended Height Unit

The base unit is fully defined by thirteen digits

Digit 6 – Air delivery (only for BM)

- S Standard
- **B** Back (fans removal from the front)
- F Front

Digit 7 – Fans

L Premium Fan Module1 Basic Fan Module (Fix Speed)

Digit 8 – Heaters

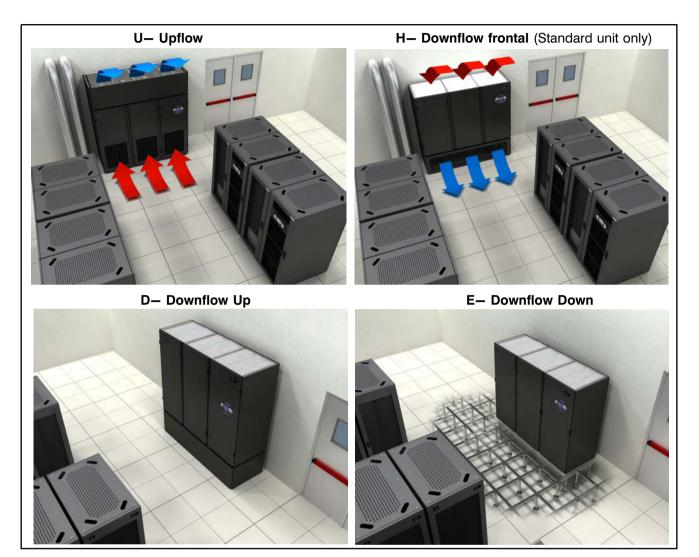
- 0 No heaters
- 1 Std Capacity
- 2 High Capacity

Digit 9 – Packaging P PLP and Pallet

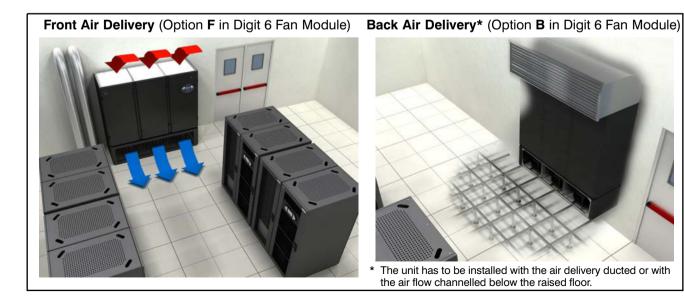
- PLP and Pallet
 PLP and Wooden Crate
- C PLP and Woo S Seaworthy

Digit 10 - Free

Digit 11 – Free


Digit 12 - Free

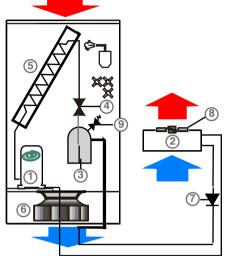
Digit 13 – Special Requirements


- A Standard Emerson Network Power
- X Special Emerson Network Power

Model Configuration

Air discharge version (digit 6)

Option for Extended Height unit Downflow Up


Cooling Versions (Digit 7)

Version A

Direct expansion units with air-cooled condenser

Air cooled direct expansion units optimize condensing temperature in the simplest installation configurations and with minimized site impact.

The compressor (1) pumps the hot gaseous refrigerant into an outdoor air-cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat - exchanged with the room air moved by the fan (6) - evaporates and returns to the compressor (1); from this point, the refrigerant begins a new refrigeration cycle. To maintain the correct refrigerant discharge pressure, the speed of the motor fan (8) is controlled (proportional mode). Shut-off valves are provided as standard to assist with routine maintenance. The compressor (1) has a built-in non-return valve to avoid return of liquid refrigerant from the condenser in summertime, thus

protecting the compressor from undesired refrigerant slugging during the start up. A second non-return valve (7) is necessary to avoid – in wintertime – refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of low pressure intervention at the start-up of compressor.

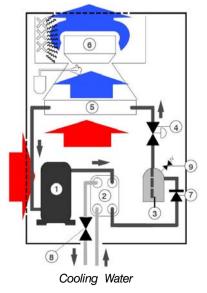
For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

External air-cooled condenser (2)

The units may be connected with a wide range of our condensers in standard or low noise version. For technical data and performance, refer to the relevant technical documentation. Chap. 5 gives the recommended matching condenser for Liebert[®] PDX units as a function of outdoor air temperature. To ensure correct operation, best performance, and longest life the units must be connected to remote condensers approved by Emerson Network Power.

Note 1: Units and external condensers are supplied separately.

Note 2: The room unit refrigeration circuit is pressurized with helium at 3 bar and the condenser refrigeration circuit at 2 bar with dry air.


Note 3: The customer is responsible for making connections between the Unit and the external condenser and for charging with refrigerant (standard R410A) and oil, when request. Full instructions for these operations are given in the User Manual.

Version W

Direct expansion units with water - cooled condenser

Liebert[®] PDX Water Cooled is the ideal configuration for leveraging all its efficiency benefits on applications with significant distances between internal and external units, or those with strong variations in geodetic height. The compressor (1) pumps the hot gaseous refrigerant into a water-cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat – exchanged with the room air moved by the fan (6) – evaporates and returns to the compressor (1); from this point, the refrigerant begins a new refrigeration cycle.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser, thus protecting the compressor from undesirable refrigerant slugging during the start up. A second non—return valve (7) is installed to avoid refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high

pressure intervention at the start-up of compressor.

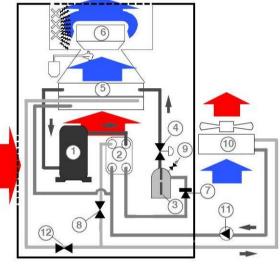
For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

Water-cooled condenser

These units are provided with one very efficient stainless steel brazed-plate water-cooled condenser (2). The condenser is fitted with a modulating valve (8) for the automatic control of condensing pressure. The units operate with **mains water** or **closed circuit with an external Dry Cooler**. When operating in a closed circuit, to avoid undesired ice formation in wintertime, it is advisable to use water/glycol mixture: refer to Chap. 5 for the percentages to be used at minimum ambient temperatures. Dry Coolers are available as an option; water-glycol mixture and circulation pump(s) are normally supplied by others.

If mains water is used, a mechanical filter must be fitted in the water circuit to protect the plate condenser (2) (for other information see the User Manual).

Note. The water—cooled Liebert[®] PDX versions are filled with the complete charge of the requested refrigerant (standard R410A).


Version F

Freecooler units

As seen in the previous chapter for all applications where efficiency is a prime objective, the Liebert[®] PDX offers the possibility of leveraging the Freecooling effect for the longest period of time, as a result of its enhanced coil distribution. The flexibility of the Liebert[®] PDX Freecooling configuration ensures the highest energy savings and efficiency in variable working conditions including DX mode.

Freecooling mode

The Freecooler unit cools the air flow by means of the air refrigerant coil (5) in direct expansion rows [direct expansion mode] or, as an alternative, the air/water coil (5) in freecooling rows [freecooling mode]. Whenever the outdoor temperature is at least 5 degrees below the indoor return temperature, the water flow is

Cooling Water

cooled by an external Dry Cooler (10) and passes through the coil (5). When the external temperature is higher than ZET (Zero Energy Temperature), the water exchanges heat with the refrigerant in the water—cooled plate condenser (2). When the external temperature is below ZET, the water is cooled as much as to cool the room air directly in the air/water coil (5, freecooling rows).

Refrigeration circuit

The compressor pumps the hot gaseous refrigerant into a water—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the expansion valve (4) and then arrives to the direct expansion rows of the evaporator (5). Here the refrigerant, thanks to the heat — exchanged with the room air moved by the fan (6) — evaporates and returns to the compressor (1); from this point, the refrigerant begins a new refrigeration cycle.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser, thus protecting the compressor from undesired refrigerant slugging during the start up. A second non—return valve (7) is installed to avoid refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

Note. The Liebert[®] PDX Freecoolers are filled with the complete charge of the requested refrigerant (standard R410A).

Water-cooled condenser

These units are provided with one very efficient stainless steel brazed—plate water—cooled condenser (2). The condenser is fitted with a modulating valve (8) for the automatic control of condensing pressure.

To reduce water and energy consumption (pump), it's advisable to adopt a cooling water control valve (by the user), able to stop water feeding when unit is off.

Water/glycol circuit

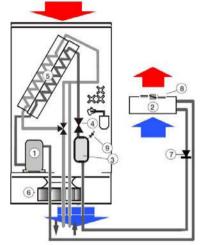
The units operate with **water in closed circuit with an external Dry Cooler** (10), cooled by the outside ambient air. To avoid undesired ice formation in wintertime, it is advisable to use water/glycol mixture: refer to the User Manual for the percentages to be used at minimum ambient temperatures. The circulation of the water–glycol mixture is forced (the pump (11) and the water–glycol mixture are not supplied).

The unit is provided with 2-way modulating valve (12) to control the glycoled-water flow passing through the water/glycol coil.

The opening or closing signals, generated by the electronic controller, manage the valve actuator movement in order to maintain the desiderd conditions in the conditioned room.

Version D

Air - cooled condenser dualfluid units


Dual Fluid can be translated as cooling redundancy. In fact the unit provides the Direct Expansion full back up cooling to a Chilled Water common working circuit.

Ideal for chilled water based applications with transition between Air Conditioning and Precision Cooling, the Liebert[®] PDX Dual Fluid Air Cooled configuration, offers efficient direct expansion cooling that works as redundant cooling for chilled water coils.

The Dualfluid unit cools the air flow by means of the air refrigerant coil (5) in direct expansion rows [direct expansion mode: see refrigeration circuit] or, as an alternative, the air/water coil (5) in the chilled water rows [chilled water mode].

The compressor (1) pumps the hot gaseous refrigerant into an outdoor air—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the expansion valve (4) and

Cooling Water

then arrives to the evaporator (5). Here the refrigerant, thanks to the heat - exchanged with the room air moved by the fan (6) - evaporates and returns to the compressor (1); from this point, the refrigerant begins a new refrigeration cycle. To maintain the correct refrigerant discharge pressure, the speed of the motor fan (8) is controlled (proportional mode).

Shut-off valves are provided as standard to assist with routine maintenance.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser in summertime, thus protecting the compressor from undesired refrigerant slugging during the start up. A second non—return valve (7) is necessary to avoid — in wintertime — refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of low pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

External air-cooled condenser

The units may be connected with a wide range of our condensers in standard or low noise version. For technical data and performance, refer to the relevant technical documentation. Chap. 5 gives the recommended matching condenser for Liebert[®] PDX units as a function of outdoor air temperature. To ensure correct operation, best performance, and longest life the units must be connected to remote condensers approved by Emerson Network Power .

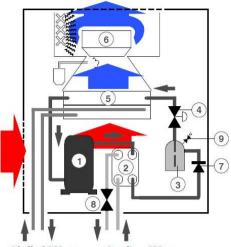
Note 1. Units and external condensers are supplied separately.

Note 2. The room unit refrigeration circuit is pressurised with helium at 3 bar and the condenser refrigeration circuit at 2 bar with dry air.

Note 3. The customer is responsible for making connections between the Unit and the external condenser and for charging with refrigerant (standard R410A).

Full instructions for these operations are given in the User Manual.

Version H


Water-cooled condenser dualfluid units

Dual Fluid can be translated as cooling redundancy. In fact the unit provides the Direct Expansion full back up cooling to a Chilled Water common working circuit.

This cooling configuration perfectly adapts to any installation layout, therefore chillers and dry coolers can be placed wherever necessary on the site.

Dualfluid mode

The Dualfluid unit cools the air flow by means of the air-refrigerant coil (5) in direct expansion rows [direct expansion mode: see refrigeration circuit] or, as an alternative, the air/water coil (5) in the chilled water rows [chilled water mode].

Refrigeration circuit

Chilled Water Cooling Water

The compressor (1) pumps the hot gaseous refrigerant into a water—cooled condenser (2). The liquefied refrigerant arrives to a liquid receiver (3) that ensures a constant and even refrigerant flow to the expansion valve (4) and then arrives to the evaporator (5). Here the refrigerant, thanks to the heat — exchanged with the room air moved by the fan (6) — evaporates and returns to the compressor (1); from this point, the refrigerant begins a new refrigeration cycle.

The compressor (1) has a built—in non—return valve to avoid return of liquid refrigerant from the condenser, thus protecting the compressor from undesirable refrigerant slugging during the start up. The second non—return valve (7) avoids refrigerant migration from the liquid pipes and the receiver (3) to the condenser (2), that should be responsible of high pressure intervention at the start—up of compressor.

For safety reason, a relief valve (9) is installed on the liquid receiver (3); this valve is equipped with flanged connections so that the refrigerant may be discharged to the outside.

Water-cooled condenser

These units are provided with one very efficient stainless steel brazed—plate water—cooled condenser (2). The condenser is fitted with a modulating valve (8) for the automatic control of condensing pressure.

The units operate with mains water or open cooling tower water.

If mains water or open tower water are used, a mechanical filter must be fitted in the water circuit to protect the condenser (for other information see the User Manual).

Note 1. The water–cooled Dualfluid versions are filled with the complete charge of the requested refrigerant (standard R410A).

Note 2. To complete the Dualfluid system it is necessary to connect the chilled water coming from the external source to the air/water coil connections (5).

Airflow (digit 8)

L – Premium Fan Module

The improvements of the EC Fan are connected with the benefits from a continuous speed control by iCOM. In fact with premium solution we can have a modulating fan speed based upon the load required, saving the power input of the fans.

EC fan power consumption functions according to the square—cube law, so that having ten the fan running at 70% instead of seven at 100%, means the energy used from the fans of the unit is reduced by more than 50%.

So as at any time the unit will run in partial load Liebert[®] PDX with premium fan module can allow to increase the saving of the stage coil thanks to saving on the fans side.

1 – Basic Fan Module (EC Fan Fix Speed)

The latest technology available: Plastic EC Fans.

They are made of composite material. This new technology allows keeping the current high-strength of aluminum alloy adding the benefits of light weight and full flexibility on blade design of the new material.

With a simple control logic that allows setting the unit for the specific site need and then have the unit running in that way. The EC Fan Fix speed can be set very easily at fixed fan speed, directly acting on the iCOM control without any need of cabling autotransformers voltages.

Liebert[®] PDX units are provided for operating within the following working ranges (the limits concern new units on which correct installation have already been made):

All versions

	Temperature:	from 20°C to 35°C
Room air conditions	Humidity ratio	From 5.5 g/kg to 12 g/kg
	Relative humidity	From 20% to 60%
	Temperature:	from 26°C to 38°C
Room air conditions (units for Smart Aisle application)	Humidity ratio	From 5.5 g/kg to 12 g/kg
(units for ornart Alsie application)	Relative humidity	From 20% to 60%
Hot water circuit	inlet water temperature	max. 85°C
Hot water circuit	water pressure	max. 8.5 bar
Storage conditions	from:	– 20°C
Storage conditions	to:	50°C
Power supply tolerances		V ± 10%, Hz ± 2

For A and D units

	Outdoor temperatur	e: lower limit			
Exceeding the winter low temperation can only be can	ature limits could stop the ried out manually through	compressor(s) by Low Pres the unit control.	ssure transducer. Reset to		
down to -20°	C	between -20°C	and -30°C		
Remote condenser fan speed required	control (VARIEX)	Remote condenser fan spe lead pressure control valve liquid receiver Hot Gas Reheat	(LOWTEX) + increased		
	Outdoor temperatur	e: higher limit			
This limit is determined by coupled a compressor stop by HP safety					
	Approved Remote A	ir Condenser			
To ensure correct operation, best approved by Emerson Network F The warranty clauses are no long	Power.				
Rela	tive position room unit	vs. remote condenser			
From unit to condenser max dis- tance	up to 60 m equivalent length	up to 100 m equivalent length	up to 60 m equivalent length		
From unit to condenser max geodetic height (1) (2)	from 20 m to -3 m	from 30 m to -8 m	from -8 m to -15 m		
Requirements					
Pipe diameter	see Tab 12c	see Tab 12c	see Tab 12c		
Oil traps on vertical line of gas refrigerant	every 6 m, max	every 6 m, max	every 6 m, max		
Extra oil charge	see User Manual	see User Manual	see User Manual		
Remote condenser fan speed control (VARIEX) installation	mandatory	mandatory	mandatory		
Condenser	design	oversized +20%	oversized +30%		
Hot gas reheat	allowed	NOT allowed	NOT allowed		
Additional non return valve on delivery line, at 2 m from compressor	recommended	mandatory mandatory			

Operating Range

For W, F and H units

Water or mixture temperature to condenser, lower limit (other information User Manual)	min. 5°C
--	----------

For F, D and H units

Water condenser ci	ircuit and chilled water circu	it	
inlet water temperature		min. 5°C	
water pressure	max. 16 bar		
Max. differential pressures	on the modulating valve (2 o	or 3 ways)	
 Max. differential pressure through the closed valve 	• ·	, . ,	
 Max. differential pressure across the valve for mod 	dulating service: Δp_{ms}		
Models	∆p _{cv} (kPa)	Δp _{ms} (kPa)	
PXW/H (water condenser circuit)	175	175	
PXF	175	175	
PX041 D/H (chilled water circuit) 300		300	
PX047 D/H "	300	200	
PX051 D/H "	300	200	
PX044 D/H "	300	200	
PX054 D/H "	300	200	
PX062 D/H "	300	200	
PX068 D/H "	210	200	
PX082 D/H "	210	200	
PX094 D/H "	210	200	
PX104 D/H "	210	200	

Positive difference in height: condenser above conditioner
 Negative difference in height: condenser below conditioner Other information in User Manual.

Liebert® PDX performances are linked to room conditions, cooling system, airflow.

The unit fitted with Digital Scroll Cooling System and Premium Fan Module can also modulate cooling capacity and airflow depending on the cooling needs. Therefore each single model can provide a wide range of capacity depending on the environment it is applied in.

Below is a description of the most common conditions currently used in Data Center applications. This can help giving a picture on unit performances. Liebert[®] PDX is an extremely flexible unit able to adapt to different sites needs. Emerson Network Power sales force has a selection tool able to provide the unit performances at the different conditions required.

LEGACY

This kind of system works with room air condition 24°C, R.H. 50%.

This system is often applied when the same direct expansion/chilled water system is used both for cooling the data centers as well as for air conditioning for people. In fact low air temperature allows a higher dehumidification required for air conditioning. In data centers dehumidification is not an advantage.

The only heat load provided by the server is sensible heat load. Therefore Liebert[®] PDX is optimized to provide the highest net sensible capacity even at low air temperatures.

You can find a reference of Liebert[®] PDX performances published in Liebert[®] PDX Brochure. Anyhow being currently this kind of working range mostly used in existing applications, and therefore, being required in different unit modulations to compare with the existing solutions, we suggest to contact our Sales representative that can offer you a detailed performance data sheet matching exactly your needs.

SMART

This kind of system works with room air condition 35°C, R.H. 30%, convenient for cold aisle containment. Emerson Network Power can offer a full solution: Smart Aisle™.

Smart Aisle[™] means a solution that goes from the rack to the power distribution, from the cooling to the AC power. It is a system optimized to offer the highest energy efficiency.

Here is a description of the cooling part of this system.

Due to the closure of the cold aisle the back air of the CRAC units can be relatively high.

This maximizes the Freecooling period and makes this system suitable for all different climates; it offers the benefit to use the Freecooling even in hot countries.

Liebert® PDX optimizes its cooling capacity and its airflow following the server requirements.

On the following pages you can find tables with references for the unit performances with these working conditions.

Due to the Smart Aisle Application system Optimization, the units can work with the precise airflow required by the servers, not being present in the data center airflow recirculation or bypass.

Should you need more information on how the unit can run with different airflow, working temperatures, etc. our sales force can provide a full detailed data sheet that can match your requirements.

Tab. 4a - Scroll Cooling System direct expansion unit @ 100% cooling capacity, Premium Fan Module

PXxxx A/W series

MODE	LS			PX041	PX045	PX047	PX051	PX057
Power	r supply voltage		V/Ph/Hz		400V	±10% / 3Ph / 50)Hz	
Refrig	erant circuit			single	single	single	single	single
PERFO	ORMANCE LEGA	CY (1)(2)			Air Cond	dition: 24°C, R.I	l. 50%	
air flo	w		m³/h	10000	10900	14500	15800	16300
Refrig	gerant					R410A		
total g	gross cooling cap	acity	kW	40.4	44.6	46.3	53.1	58.9
sensil	ble gross cooling	capacity	kW	37.7	41.5	46.3	53.1	57.9
SHR	(sensible/total rati	o)	-	0.93	0.93	1	1	0.98
comp	pressor power inp	ut	kW	8.26	9.31	9.34	11.27	12.6
	oressor OA		А	15.13	17.43	17.47	22.27	24.3
		Net Sensible cooling capacity	kW	36.2	39.8	43.7	49.9	55.
	Upflow	fan power input	kW	1.47	2.39	2x1.28	2x1.6	2x1.7
	-	unit power input	kW	9.76	11.74	11.93	14.5	16.1
		Net Sensible cooling capacity	kW	35.8	39.1	43.8	50	54.6
E	Downflow Up	fan power input	kW	1.9	2.39	2x1.23	2x1.55	2x1.66
atic	•	unit power input	kW	10.19	11.73	11.83	14.4	16
in		Net Sensible cooling capacity	kW	36	39.3	44.2	50.5	55.1
Configuration	Downflow	fan power input	kW	1.72	2.13	2x1.05	2x1.29	2x1.39
ō.	Down	unit power input	kW	10.01	11.47	11.47	13.88	15.40
0		Net Sensible cooling capacity	kW	35.3	39.1	43.4	49.5	53.4
	Downflow	fan power input	kW	1.41	2.33	2x1.19	2x1.49	2x1.6
	Frontal	unit power input	kW	9.7	11.67	11.74	14.28	15.9
Conde	ensing section (V			0.7	11.07		11.20	10.0
	• •	-condensation temp: 45°C						
water	•	-condensation temp. 45 0	l/s	0.918	1026	1061	1245	1363
	water side pressure drop		kPa	11	14	15	20	18
FAN	side pressure are	۶¢	Кıu		17	10	20	
	tity (Premium Fan	Module)	no.	1	1	1	1	1
FLA	ary (Fremann Fan	Moduley	A	5	5	5	5	Ę
LRA			A	0.1	0.1	0.1	0.1	0.1
	tity (Basic Fan Mo	dule Fix speed)	no.	1	1	1	1	0.
FLA	itity (Dasic I all Nic	dule, i ix speed)	но. А	5	5	5	5	5
LRA			A	0.1	0.1	0.1	0.1	0.1
	PRESSOR		A	0.1	0.1	0.1	0.1	0.1
		a Sustam)	no.	1	1	1	1	2
FLA	tity (Scroll Cooling	y System)	но. А	25	31	31	34	2x21
LRA			A	25 118	140	140	174	2x2 2x111
	ORATING COIL		A	110	140	140	174	2311
			20	1	1	1	1	
•	tity / configuration		no.	I				1
pipes			100 100	1.0		er/treated alumin		1.0
pitch	TINS		mm	1.8	1.8	1.8	1.8	1.8
rows			no.	6	6	4	4	4 005
	surface		m²	1.1375	1.1375	1.825	1.825	1.825
	IGERANT CONNE dels only)	ECTIONS		Refrigerant	connecting p	ope diameter:	see lab. 12t,	Chap. 12
•	ne outlet (pipe to	he welded e d		22	22	22	22	22
•	line inlet (pipe to		mm	18			18	18
	R CIRCUIT (W m		mm	10	18	18	10	10
	•	• •				Brazed plate		
	condenser type (W models only) water connections ISO 7/1 (W models only)		inch	Pp 1 1/4	Pp 1 1/	•	Pn 1 1/	Dn 1 1
				Rp 1 1/4	Rp 1 ¼	Rp 1 ¼	Rp 1 ¼	Rp 1 ½
	water internal volu	ыль	I	4.54	4.54	4.54	4.54	5.54
	NSIONS			1000	1000	1760	1760	
width			mm	1200	1200	1750	1750	1750
depth			mm	890	890	890	890	890
heigh			mm	1970	1970	1970	1970	1970
footpi	rint		m ²	1.068	1.068	1.5575	1.5575	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

MODE	ELS			PX044	PX054	PX062	PX074	PX068	PX082
Powe	r supply voltag	je	V/Ph/Hz			400V ±10%	/ 3Ph / 50Hz		
Refrig	erant circuit			double	double	double	double	double	double
PERF	ORMANCE LE	GACY (1)(2)			А	ir Condition: 2	24°C, R.H. 509	6	
air flo	w		m³/h	12500	15500	16300	17600	18500	24000
	gerant					R41	••••		
	gross cooling o		kW	44.8	55.2	62.5	74.8	66.2	85.7
	ble gross cooli		kW	44.3	54.6	59.5	67.7	64.8	83.6
	(sensible/total		_	0.99	0.99	0.95	0.9	0.98	0.98
comp	pressor power	input	kW	4.56+4.55	5.51+5.53	6.33+6.33	8.27+7.27	6.33+6.33	8.29+8.26
comp	pressor OA		А	8.16+8.14	10.77+10.8 2	12.17+12.1 7	15.14+13.9	12.17+12.1 7	15.17+15.1
		Net Sensible cooling capacity	kW	41.9	50.7	55.1	8 62.6	62.7	3 79.5
	Upflow	• • •	kW	2x1.07	2x1.75	2x1.99	02.0 2x2.44	3x0.95	3x1.76
	opnow	fan power input unit power input	kW	11.28	14.57	16.66	20.45	15.54	21.87
		Net Sensible cooling capacity	kW	42.3	51.2	55.6	62.9	62.2	78.5
c	Downflow	fan power input	kW	42.3 2x0.99	2x1.70	2x1.94	02.9 2x2.38	3x0.88	70.5 3x1.71
Ę	Up	unit power input	kW	210.99	14.47	16.57	20.33	15.33	21.71
ura		Net Sensible cooling capacity	kW	42.6	51.6	56.2	63.6	62.4	79
figi	Downflow	fan power input	kW	42.0 2x0.84	2x1.49	2x1.66	2x2.02	3x0.8	3x1.55
Configuration	Down	unit power input	kW	10.82	14.05	16.01	19.61	15.09	21.23
0		· · ·	kW	41.6	50.2	54.6	62	15.09	21.20
	Downflow	Net Sensible cooling capacity fan power input	kW	2x0.92	2x1.65	2x1.88	2x2.32	_	_
	Frontal		kW	10.98	14.38	16.44	20.21	_	_
Cond	oncina contior	unit power input n (W models only)	KVV	10.96	14.30	10.44	20.21		
	-	°C–condensation temp: 45°C							
futer	iniet temp. of			0.554+0.48	0.678+0.59	0.766+0.67	0.940+0.75	0.779+0.68	1.031+0.90
water	flow		l/s	7	8	8	5	4	7
water	side pressure	drop	kPa	13+10	13+11	13+10	11+8	8+6	14+11
AN									
Quar	tity (Premium I	Fan Module)	no.	2	2	2	2	3	з
FLA		,	A	10	10	10	10	15	15
LRA			А	0.2	0.2	0.2	0.2	0.3	0.3
Quar	tity (Basic Fan	Module, Fix speed)	no.	1	1	2	2	2	2
FLA			А	5	5	10	10	10	10
LRA			А	0.1	0.1	0.2	0.2	0.2	0.2
СОМ	PRESSOR								
Quar	tity (Scroll Coc	oling System)	no.	2	2	2	2	2	2
FLA			A	2x15	2x16.2	2x21	2x25	2x21	2x25
LRA			A	2x75	2x101	2x111	2x118	2x111	2x118
	ORATING COI								
•	tity / configurat	ion	no.	1	1	1	1	1	1
pipes						Copper/treate			
pitch	fins		mm	1.8	1.8	1.8	1.8	1.8	1.8
rows			no.	3+3	3+3	3+3	3+3	3+3	3+3
	front surface		m ²	1.675	1.675	1.675	1.675	2.675	2.675
		NNECTIONS (A models only)				cting pipe di			
gas line outlet (pipe to be welded, o.d.)		mm	18/18	18/18	18/18	22/22	18/18	22/22	
	4 1	to be welded, o.d.)	mm	18/18	18/18	18/18	18/18	18/18	18/18
	•	/ models only)				D	d plata		
	enser type (W			D= 11/	D- 4.1/	Brazed	•	D= 4.17	
		SO 7/1 (W models only)	inch	Rp 1 1/4	Rp 1 ¼	Rp 1 1/4	Rp 1 1/4	Rp 1 ¼	Rp 1 ½
	water internal	volume	I	5.42	6.1	6.76	8.98	8.98	8.98
	NSIONS		_	1960	4760	1	1	0550	0000
width			mm	1750	1750 890	1750 890	1750	2550	2550
dent					840	890	890	890	890
deptl heigh			mm mm	890 1970	1970	1970	1970	1970	1970

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

MOD	ELS			PX094	PX104	PX120	PX059 EXT	PX092 EXT
Powe	r supply voltage		V/Ph/Hz		400\	/ ±10% / 3Ph /	50Hz	
	gerant circuit			double	double	double	double	double
PERF	ORMANCE LEGA	CY (1)(2)				dition: 24°C, R		
air flo			m³/h	26000	27000	27000	11200	17950
	gerant					R410A		
	gross cooling capa		kW	94.4	106.5	123.8	54.4	92.5
	ible gross cooling		kW	91.3	98.8	107.7	45.1	76.3
	(sensible/total rational state)	·	-	0.97	0.93	0.87	0.93	0.83
	pressor power inp	ut	kW	9.42+9.31	11.29+11.24	14.55+12.65	12.65	11.26+9.27
comp	oressor OA		A	17.57+17.42	22.3+22.22	27.96+24.33	24.33	22.25+17.36
		Net Sensible cooling capacity	kW	86	92.9	101.9	45.3	72.8
	Upflow	fan power input	kW	3x2.13	3x2.39	3x2.39	1.98	2x1.85
		unit power input	kW	25.17	29.73	34.4	14.66	24.24
_		Net Sensible cooling capacity	kW	84.9	91.8	100.7	43	72.3
ē	Downflow Up	fan power input	kW	3x2.13	3x2.33	3x2.33	2.12	2x2.02
Configuration		unit power input	kW	25.15	29.55	34.22	14.8	24.6
nɓ	Downflow	Net Sensible cooling capacity	kW	85.6	92.5	101.5	43.3	72.4
nfi	Down	fan power input	kW	3x1.9	3x2.08	3x2.08	1.85	2x1.96
പ	Down	unit power input	kW	24.46	28.8	33.47	14.53	24.48
-	Downflow	Net Sensible cooling capacity	kW	-	-	-	-	-
	Frontal	fan power input	kW	-	-	-	-	-
	unit power input		kW	-	-	-	-	-
	ensing section (V inlet temp: 30°C·	-condensation temp: 45°C						
wate			l/s	1.152+1.012	1.326+1.173	1.629+1.271	1329	1223
wate	r side pressure dro	p	kPa	18+13	23+18	25+16	18	20
FAN								
Quar	ntity (Premium Fan	Module)	no.	3	3	3	1	2
FLA			Α	15	15	15	5	10
LRA			Α	0.3	0.3	0.3	0.1	0.2
Quar	ntity (Basic Fan Mo	dule, Fix speed)	no.	2	2	-	1	2
FLA			Α	10	10	-	5	10
LRA			А	0.2	0.2	-	0.1	0.2
COMI	PRESSOR							
Quar	ntity (Scroll Cooling	g System)	no.	2	2	4	2	2
FLA			А	2x31	2x34	4x22	2x21	31 + 34
LRA			А	2x140	2x174	4x118	2x111	140 + 174
EVAP	ORATING COIL							
quan	tity / configuration		no.	1	1	1	1	1
pipes	s/fins				Copp	er/treated alum	inum	
pitch	fins		mm	1.8	1.8	1.8	1.8	1.8
rows			no.	3+3	3+3	3+3	6	3+3
front	surface		m ²	2.675	2.675	2.675	1.53	2.412
REFR	IGERANT CONNE	ECTIONS (A models only)		Refrigeran	t connecting	pipe diamete	r: see Tab. 12	f. Chap. 12
	ine outlet (pipe to		mm	22/22	22/22	22/22	22/22	22/28
0	l line inlet (pipe to		mm	18/18	18/18	18	18/18	18/18
	R CIRCUIT (W m			10,10	10,10	10	10,10	10,10
	enser type (W mo	• ·				Brazed plate		
		7/1 (W models only)	inch	Rp 1 1/4	Rp 1 1/4	Rp 1 1/4	Rp 1 1/4	Rp 1 ¼
	water internal volu			прт74 8.98	8.98	11.08	5.34	7.98
	NSIONS		I	0.98	0.98	11.08	5.34	7.98
				0550	0550	0550	1000	1750
width			mm	2550	2550	2550	1200	1750
dept			mm	890	890	890	890	890
heigh			mm	1970	1970	1970	2570	2570
footp	orint		m ²	2.2695	2.2695	2.2695	1.068	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) - Condensing temperature: 45°C - Air flow of the units refers to the standard configuration with F5 class filter.

(2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

Tab. 4b - Digital Scroll Cooling System direct expansion unit @ 100% cooling capacity, Premium Fan Module

PXxxx A/W series

MOD	-			PX041	PX045	PX047	PX051	PX057
	r supply voltage		V/Ph/Hz			±10% / 3Ph / 50		
	gerant circuit	OV (4) (0)		single	single	single	single	single
	ORMANCE LEGA	CY (1)(3)		10000		lition: 24°C, R.H		1000
air flo			m³/h	10000	10900	14500 D4104	15800	1630
	igerant	14	134/	00.7	40.0	R410A	51.0	50
	gross cooling cap	-	kW	39.7	43.8	48.2	51.9	58.
	ible gross cooling		kW	37.4	41.1	48.2	51.9	57.
	(sensible/total rati		_	0.94	0.94	1	1	0.9
	pressor power inp	ut	kW	8.47	9.59	10.66	11.22	12.7
com	oressor OA	Not Sonaible appling conspire	A kW	15.6 36.3	18.2 39.5	14.94 45.6	21.82 48.5	24.
	Unflow	Net Sensible cooling capacity fan power input	kW	1.9	2.39	45.6 2x1.28	48.5 2x1.6	2x1.7
	Upflow	unit power input	kW	10.41	12.02	13.25	14.45	281.7
		Net Sensible cooling capacity	kW	35.5	38.7	45.7	48.8	54.
Ę	Downflow Up	fan power input	kW	1.9	2.33	2x1.23	2x1.55	2x1.6
Configuration	Downlow op	unit power input	kW	10.4	11.95	13.15	14.35	16
Ë		Net Sensible cooling capacity	kW	35.7	38.9	46.1	49.3	5
₫	Downflow	fan power input	kW	1.72	2.13	2x1.05	2x1.29	2x1.3
5	Down	unit power input	kW	10.22	11.75	12.79	13.83	15.5
5		Net Sensible cooling capacity	kW	35.6	38.7	45.3	48.3	53
	Downflow	fan power input	kW	1.84	2.33	2x1.19	2x1.49	2x1.6
	Frontal	unit power input	kW	10.34	11.95	13.07	14.23	
ond	ensing section (V							
		-condensation temp: 45°C						
	r flow	·	l/s	0.907	1015	1130	1219	13
	r side pressure dro	a	kPa	11	13	16	19	
	ORMANCE SMAF	•				lition: 35°C, R.H		
	ow (4)		m ³ /h	10000	10900	14500	15800	1630
	igerant		,			R410A		
	gross cooling cap	acity	kW	48.4	53.3	60.5	64.8	71
	ible gross cooling	5	kW	48.4	53.3	60.5	64.8	71
	(sensible/total rati		_	-0.4	1	1	1	/ 1
	pressor power inp		kW	8.55	9.73	10.71	11.11	12
	pressor power imp pressor OA	ut	A	15.64	18.44	15.06	21.53	25.0
		Net Sensible cooling capacity	kW	47	51.5	57.9	61.6	68
	Upflow	fan power input	kW	1.9	2.39	2x1.28	2x1.6	2x1.
	Ophow	unit power input	kW	10.49	12.16	13.3	14.34	16.3
		Net Sensible cooling capacity	kW	46.5	50.9	58	61.7	68
Ę	Downflow Up	fan power input	kW	1.9	2.39	2x1.23	2x1.55	2x1.0
Conriguration	Downlow op	unit power input	kW	10.48	12.15	13.2	14.24	16.2
E E		Net Sensible cooling capacity	kW	46.7	51.1	58.4	62.2	
6	Downflow	fan power input	kW	1.72	2.13	2x1.05	2x1.29	2x1.3
5	Down	unit power input	kW	10.3	11.89	12.84	13.72	15.7
د		Net Sensible cooling capacity	kW	46.6	50.9	57.3	60.9	67
	Downflow	fan power input	kW	1.84	2.33	2x1.19	2x1.49	2x1.0
	Frontal	unit power input	kW	10.42	12.09	13.12	14.13	16.
ond	ensing section (V		17.8.8	10.42	12.03	10.12	17.13	10.
	• •	-condensation temp: 45°C						
	r flow	-condensation temp. 45 C	l/s	1089	1216	1391	1493	163
			kPa					10
	r side pressure dro	μ	кга	16	19	25	28	
	atity (Promium Far	Module)	P O	+	4	0	0	
	ntity (Premium Fan	module)	no.	1	1	2	2	
			A	5	5	10	10	
.RA			A	0.1	0.1	0.2	0.2	0
	ntity (Basic Fan Mo	auie, Fix speea)	no.	1	1	1	1	
LA			A	5	5	5	5	
RA			A	0.1	0.1	0.1	0.1	0
-	PRESSOR					_		
	ntity (Digital Scroll	Cooling System)	no.	1	1	2	2	
LA			A	25	27	2x16.5	2x16.2	2x
RA			A	118	140	2x101	2x101	2x1
	ORATING COIL							
quar	tity / configuration		no.	1	1	1	1	
pipes	s/fins				Coppe	er/treated alumir	num	
oitch	fins		mm	1.8	1.8	1.8	1.8	1
			no.	6	6	4	4	
rows								

MODELS		PX041	PX045	PX047	PX051	PX057
REFRIGERANT CONNECTIONS (A models only)		Refrigerant	connecting p	pipe diameter:	see Tab. 12f,	Chap. 12
gas line outlet (pipe to be welded, o.d.)	mm	22	22	22	22	22
liquid line inlet (pipe to be welded, o.d.)	mm	18	18	18	18	18
WATER CIRCUIT (W models only)						
condenser type (W models only)				Brazed plate		
water connections ISO 7/1 (W models only)	inch	Rp 1 1⁄4	Rp 1 ¼	Rp 1 ¼	Rp 1 1⁄4	Rp 1 ½
Total water internal volume	1	4.54	4.54	4.54	4.54	5.54
DIMENSIONS						
width	mm	1200	1200	1750	1750	1750
depth	mm	890	890	890	890	890
height	mm	1970	1970	1970	1970	1970
footprint	m ²	1.068	1.068	1.5575	1.5575	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

IOD	ELS			PX044	PX054	PX062	PX074	PX068	PX082
owe	er supply volta	age	V/Ph/Hz			400V ±10%	/ 3Ph / 50Hz		
Refri	gerant circuit			double	double	double	double	double	double
PERI	FORMANCE L	EGACY (1)(3)				Air Condition:	24°C, R.H. 50%		
air fl	ow		m³/h	12500	15500	16300	17600	18499	240
Ref	rigerant						10A		
total gross cooling capacity		kW	44.6	55	62.2	74.3	65.8	86	
	sible gross coo		kW	44.2	54.5	59.4	67.5	64.7	83
	R (sensible/tota	,	_	0.99	0.99	0.95	0.91	0.98	0.
	pressor power	r input	kW	4.76+4.56	5.69+5.51	6.42+6.33	7.54+8.27	6.45+6.33	9.29+9
com	pressor OA		A	8.38+8.16	11.01+10.77		14.15+15.14	12.66+12.17	16.5+16.
		Net Sensible cooling capacity	kW	41.8	50.7	54.9	62.4	62.6	79
	Upflow	fan power input	kW	2x1.07	2x1.75	2x1.99	2x2.44	3x0.95	3x1.
		unit power input	kW	11.48	14.73	16.76	20.72	15.66	23.
_	Downflow	Net Sensible cooling capacity	kW	42.2	51.1	55.5	62.7	62.1	78
Configuration	Up	fan power input	kW	2x0.99	2x1.71	2x1.94	2x2.38	3x0.88	3x1.
rati		unit power input	kW	11.33	14.63	16.66	20.6	15.45	2
ŋ	Downflow	Net Sensible cooling capacity	kW	42.5	51.5	56.1	63.4	62.3	7
ji j	Down	fan power input	kW	2x0.84	2x1.49	2x1.66	2x2.02	3x0.8	3x1
ŏ		unit power input	kW	11.03	14.21	16.1	19.88	15.21	23
	Downflow	Net Sensible cooling capacity	kW	41.5	50.1	54.5	61.8	_	
	Frontal	fan power input	kW	2x0.92	2x1.65	2x1.88	2x2.32	-	
		unit power input	kW	11.18	14.54	16.54	20.48		
		on (W models only)							
		30°C-condensation temp: 45°C							
wate	er flow		l/s	0.487+0.553	0.599 + 0.677	0.672+0.765	0.751+0.939	0.678+0.778	0.933+1.0
	er side pressur	•	kPa	10+13	11+13	10+13	8+11	6+8	11+
ER	FORMANCE S	MART (2)(3)				Air Condition:	35°C, R.H. 30%		
air fl	ow (4)		m³/h	12500	15500	16300	17600	18500	240
Ref	rigerant					R4	10A		
ota	gross cooling	capacity	kW	59.9	71.4	77.3	90.9	88.5	10
sens	sible gross coo	oling capacity	kW	59.9	71.4	77.3	90.8	88.5	10
SHF	l (sensible/tota	Il ratio)	-	1	1	1	1	1	
com	pressor powe	r input	kW	4.83+4.56	5.65+5.43	6.54+6.33	7.57+8.36	6.58+6.33	9.37+9
com	pressor OA		A	8.41+8.21	10.87+10.6	12.8+12.17	14.16+15.27	12.86+12.17	16.57+16
		Net Sensible cooling capacity	kW	53.8	68.5	73	85.7	80.5	10
	Upflow	fan power input	kW	2x1.07	2x1.75	2x1.99	2x2.44	3x0.95	3x1
		unit power input	kW	11.57	14.62	16.86	20.84	15.81	24
	Downflow	Net Sensible cooling capacity	kW	57.9	67.9	73.4	86.1	85.9	10
Configuration	Up	fan power input	kW	2x0.99	2x1.70	2x1.94	2x2.38	3x0.88	3x1
ati	σp	unit power input	kW	11.4	14.51	16.78	20.72	15.58	23
nb		Net Sensible cooling capacity	kW	58.2	68.3	74	86.8	86.1	10
Ē	Downflow Down	fan power input	kW	2x0.84	2x1.49	2x1.66	2x2.02	3x0.8	3x1
ပိ	Down	unit power input	kW	11.1	14.09	16.22	20	15.34	23
		Net Sensible cooling capacity	kW	56.8	66.4	72.5	84.9	-	
	Downflow	fan power input	kW	2x0.92	2x1.65	2x1.88	2x2.32	_	
	Frontal	unit power input	kW	11.25	14.41	16.64	20.59	-	
ond	densing section	on (W models only)							
	-	30°C-condensation temp: 45°C							
wate	er flow	-	l/s	0.571+0.669	0.71+0.832	0.794+0.964	0.861+1.171	0.794+0.935	1.096+1.3
wate	er side pressur	e drop	kPa	13+17	15+19	14+21	10+18	8+11	16+
AN									
Qua	ntity (Premium	1 Fan Module)	no.	2	2	2	2	3	
FLA			А	10	10	10	10	15	
LRA		А	0.2	0.2	0.2	0.2	0.3		
Qua	ntity (Basic Fa	n Module, Fix speed)	no.	1	1	2	2	2	
FLA		-	А	5	5	10	10	10	
LRA			А	0.1	0.1	0.2	0.2	0.2	
	IPRESSOR								
		croll Cooling System)	no.	2	2	2	2	2	
FLA		,	A	2x15	2x16.2	2x21	2x25	2x21	4>
LRA			A	2x75	2x101	2x111	2x118	2x111	4)
	PORATING CO	DIL							
	ntity / configur		no.	1	1	1	1	1	
qua							ed aluminum		
	5/1115								
pipe	n fins		mm	1.8	1.8	1.8	1.8	1.8	
pipe	n fins		mm no.	1.8 3+3	1.8 3+3	1.8 3+3	1.8 3+3	1.8 3+3	3

MODELS		PX044	PX054	PX062	PX074	PX068	PX082	
REFRIGERANT CONNECTIONS (A models only)		Refrigerant connecting pipe diameter: see Tab. 12f, Chap. 12						
gas line outlet (pipe to be welded, o.d.)	mm	18/18	18/18	18/18	22/22	18/18	22/22	
liquid line inlet (pipe to be welded, o.d.)	mm	18/18	18/18	18/18	18/18	18/18	18/18	
WATER CIRCUIT (W models only)								
condenser type (W models only)				Brazed	plate			
water connections ISO 7/1 (W models only)	inch	Rp 1 1⁄4	Rp 1 ¼					
Total water internal volume	I	5.42	6.1	6.76	8.98	8.98	8.98	
DIMENSIONS								
width	mm	1750	1750	1750	1750	2550	2550	
depth	mm	890	890	890	890	890	890	
height	mm	1970	1970	1970	1970	1970	1970	
footprint	m ²	1.5575	1.5575	1.5575	1.5575	2.2695	2.2695	

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

MODE				PX094	PX104	PX120	PX059 EXT	PX092 EX
	supply voltage		V/Ph/Hz			/ ±10% / 3Ph / §		1. 11.
	erant circuit	CV (1)(2)		double	double	double	single	double
air flo		CT (1)(3)	m ³ /h	26000	27000	dition: 24°C, R 27000	. п. 50% 11200	1795
	gerant		1110/11	20000	27000	R410A	11200	1790
	gross cooling capa	acity	kW	97.7	104.2	123.3	57	91
-	ble gross cooling o	-	kW	92.8	97.8	107.4	47.3	7
	(sensible/total ratio		_	0.95	0.94	0.87	0.83	, 3.0
	pressor power inpu	,	kW	10.64+10.68	11.22+11.2	12.72+14.82	12.74	9.52+11.2
	pressor OA		A	14.9+15	21.85+21.76	24.76+28.14	24.78	18.11+22.2
		Net Sensible cooling capacity	kW	87.6	91.9	101.6	45.2	72
	Upflow	fan power input	kW	3x2.13	3x2.39	3x2.39	1.98	2x1.8
	•	unit power input	kW	27.75	29.61	34.75	14.74	24
		Net Sensible cooling capacity	kW	86.4	90.8	100.4	44.9	
S	Downflow Up	fan power input	kW	3x2.13	3x2.33	3x2.33	2.45	2x2.
gtio	20op	unit power input	kW	27.74	29.44	34.56	15.22	24.
nrs		Net Sensible cooling capacity	kW	87.1	91.5	101.2	45.1	72
fig	Downflow	fan power input	kW	3x1.9	3x2.08	3x2.08	2.18	2x1.
Configuration	Down	unit power input	kW	27.05	28.69	33.81	14.95	24.
0		Net Sensible cooling capacity	kW				- 14.95	24.
	Downflow	0 1 3		-		_	-	
	Frontal	fan power input	kW	-	-	-	-	
		unit power input	kW	_			-	
	ensing section (W	• •						
	•	-condensation temp: 45°C	.,					
water			l/s	1.071+1.217	1.149+1.299	1.266+1.626	1.325	0.934+1.2
	side pressure dro	•	kPa	15+19	18+21	16+25	18	11+
	ORMANCE SMAR	T (2)(3)				dition: 35°C, R		
air flo			m ³ /h	26000	27000	27000	11200	179
	gerant					R410A		
otal o	gross cooling capa	acity	kW	121.4	128.4	148	66.4	1
sensi	ble gross cooling o	capacity	kW	121.4	128.3	148	66.4	11
SHR	(sensible/total ratio	b)	-	1	1	1	1	
comp	pressor power inpu	ut	kW	10.69+10.73	11.19+11.02	12.77+14.97	12.83	9.62+11.
comp	oressor OA		A	15.01+15.05	21.73+21.3	24.83+28.22	24.91	18.25+22.
		Net Sensible cooling capacity	kW	116.4	122.4	142.5	62.9	104
	Upflow	fan power input	kW	3x2.13	3x2.39	3x2.39	1.98	2x1
		unit power input	kW	27.84	29.38	34.96	14.82	24.
		Net Sensible cooling capacity	kW	115	121.4	141	64	10
5	Downflow Up	fan power input	kW	3x2.13	3x2.33	3x2.33	2.38	2x2
Configuration		unit power input	kW	27.84	29.23	34.76	15.24	24
ž		Net Sensible cooling capacity	kW	115.7	122.1	141.7	64.2	10
j∎ L	Downflow	fan power input	kW	3x1.9	3x2.08	3x2.08	2.18	2x1
<u>s</u>	Down	unit power input	kW	27.15	28.48	34.01	15.04	24
9		Net Sensible cooling capacity	kW			-		
	Downflow	fan power input	kW	_	_	_	_	
	Frontal	unit power input	kW	_	_	_	_	
ond	ensing section (W		KVV			-	-	
	•	-condensation temp: 45°C						
	flow	-condensation temp. 45 C	l/s	1 054 1 1 597	1 222 1 1 626	1.409+2.009	1522	1.056+1.5
		~		1.254+1.537	1.333+1.626			
	side pressure dro	p	kPa	20+30	23+33	20+38	23	15+
AN	titu (Decention 5	Madula		~	~	~		
	tity (Premium Fan	woule)	no.	3	3	3	1	
FLA			A	15	15	15	5	
RA			A	0.3	0.3	0.3	0.1	
Juan	tity (Basic Fan Mo	aule, Fix speed)	no.	2	2	-	1	
			A	10	10	-	5	
=LA			A	0.2	0.2	-	0.1	
FLA LRA								
=la _ra : omf	PRESSOR		no.	4	4	4	2	
FLA _RA OMF Quan	PRESSOR tity (Digital Scroll (Cooling System)			4.400	4x22	2x21	2)
FLA _RA OMF Quan		Cooling System)	A	4x16.5	4x16.2	4722		
=LA _RA © OMF Quan =LA		Cooling System)		4x16.5 4x101	4x16.2 4x101	4x118	2x111	
FLA LRA OMF Quan FLA LRA		Cooling System)	А					
FLA LRA Quan FLA LRA	tity (Digital Scroll C	Cooling System)	А					
FLA LRA Quan FLA LRA VAP(quant	tity (Digital Scroll (DRATING COIL tity / configuration	Cooling System)	A A	4x101	4x101 1	4x118	2x111	
FLA LRA Quan FLA LRA VAPO quant pipes	tity (Digital Scroll (DRATING COIL Lity / configuration /fins	Cooling System)	A A	4x101	4x101 1	4x118 1	2x111	2x1
FLA LRA COMF Quan FLA LRA	tity (Digital Scroll (DRATING COIL Lity / configuration /fins	Cooling System)	A A no.	4x101 1	4x101 1 Copper/trea	4x118 1 ted aluminum	2x111 1	2x1

MODELS		PX094	PX104	PX120	PX059 EXT	PX092 EXT
REFRIGERANT CONNECTIONS (A models only)		Refrigerant	connecting p	pipe diamete	r: see Tab. 12	f, Chap. 12
gas line outlet (pipe to be welded, o.d.)	mm	22/22	22/22	22/22	22/22	22/22
liquid line inlet (pipe to be welded, o.d.)	mm	18/18	18/18	18	18/18	18/18
WATER CIRCUIT (W models only)						
condenser type (W models only)				Brazed plate		
water connections ISO 7/1 (W models only)	inch	Rp 1 1⁄4	Rp 1 ¼	Rp 1 ¼	Rp 1 ¼	Rp 1 ¼
Total water internal volume	I	8.98	8.98	11.08	5.34	7.98
DIMENSIONS						
width	mm	2550	2550	2550	1200	1750
depth	mm	890	890	890	890	890
height	mm	1970	1970	1970	2570	2570
footprint	m ²	2.2695	2.2695	2.2695	1.068	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

Tab. 4c – Scroll Cooling System freecooling direct expansion unit @ 100% cooling capacity, Premium Fan Module PXxxx F series

MOD	ELS			PX041	PX047	PX051	PX044	PX054
	r supply voltage		V/Ph/Hz			±10% / 3Ph / §		
	gerant circuit			single	single	single	double	double
	ORMANCE LEGA	.CY (1)(2)				lition: 24°C, R		
air flo			m ³ /h	10000	13200	15200	12500	1530
	ene glycol		%	30	30	30	30	3
	osed Dry Cooler			EST040	EST040	EST050	EST040	EST05
		IG PERFORMANCE (@ 35.0°C out	door air temperat	(ure)		R410A		
	i gerant gross cooling cap	acity	kW	35.4	42	49.5	38.8	47.
	ible gross cooling	-	kW	35	42	49.5	38.8	47.
	(sensible/total rati		_	0.99	1	40.0	1	
	compressor power input		kW	9.94	10.67	12.46	5.67+5.57	6.75+6.6
	pressor OA		A	17.57	3.99	4.02	9.75+5.59	12.3+12.1
		Net Sensible cooling capacity	kW	35.7	42	44.8	36	43.3
	Upflow	fan power input	kW	2.41	2x1.35	2x1.91	2x1.33	2x2.1
	-	unit power input	kW	12.4	13.4	16.3	13.92	17.
		Net Sensible cooling capacity	kW	32.9	39.4	45.8	36.2	43.
5	Downflow Up	fan power input	kW	2.41	2x1.3	2x1.85	2x1.28	2x2.1
Configuration	2	unit power input	kW	12.38	13.3	16.19	13.83	17.6
gur	D	Net Sensible cooling capacity	kW	35	39.8	46.3	36.5	44.
Ĩ	Downflow Down	fan power input	kW	2.15	2x1.13	2x1.59	2x1.11	2x1.8
ပိ	DOWII	unit power input	kW	12.12	12.96	15.67	13.49	17.1
	Denneflann	Net Sensible cooling capacity	kW	32.7	39	45.5	35.9	43.
	Downflow Frontal	fan power input	kW	2.28	2.42	3.5	2.4	4.0
		unit power input	kW	12.25	13.09	15.96	13.63	17.4
mixtu	ure flow		l/s	1397	1943	1987	0.708+0.708	0.78+0.7
	ure condenser pre		kPa	18	32	34	20+20	17+1
unit total pressure drop			kPa	28	52	55	23+23	20+2
		ORMANCE (@ 5.0°C outdoor air ten	• •					
total gross cooling capacity		kW	25.3	33.8	40.5	28.7	35.	
	ible gross cooling		kW	25.3	33.8	40.5	28.7	35.
SHR	(sensible/total rati		_	1	1	1	1	
		Net Sensible cooling capacity	kW	23	31.3	36.9	26	31.3
	Upflow	fan power input	kW	2.41	2x1.35	2x1.91	2x1.33	2x2.1
		unit power input	kW	2.44	2.73	3.85	2.69	4.4
~	D	Net Sensible cooling capacity	kW	22.9	31.2	36.7	26.1	31.
Configuration	Downflow Up	fan power input	kW	2.41	2x1.3	2x1.85	2x1.28	2x2.1
Irat		unit power input	kW	2.44	2.63	3.73	2.59	4.3
ligt	Downflow	Net Sensible cooling capacity	kW	23.2	31.7	37.5	26.4	31.
Ö	Down	fan power input	kW kW	2.15	2x1.13	2x1.59	2x1.11	2x1.8
0		unit power input	kW	2.18 23.1	2.29 31.6	3.21 37.3	2.25 26.3	3.7
	Downflow	Net Sensible cooling capacity						
	Frontal	fan power input	kW kW	2.28	2.42 2.45	3.5	2.4 2.43	4.0
mixte	ure flow	unit power input	I/s	2.31	1.94	3.53 1.99	1.42	4.0
	otal pressure drop		kPa	73	51	53	24	2
	cooler pressure d		kPa	75	75	69	75	6
TAN		бр	кга	75	75	09	75	0
	ntity (Premium Fan	Module)	no.	1	1	1	2	
FLA	any (Fremann an	woodle)	A	5	5	5	10	1
LRA			A	0.1	0.1	0.1	0.2	0.
	ntity (Basic Fan Mo	dule. Fix speed)	no.	1	1	1	1	0.
FLA			A	5	5	5	5	
LRA			A	0.1	0.1	0.1	0.1	0.
	PRESSOR							
	ntity (Scroll Cooling	g System)	no.	1	1	1	2	
FLA			A	25	31	34	2x15	2x16.
LRA			А	118	140	174	2x75	2x10
EVAP	ORATING COIL							
quar	itity / configuration		no.	1	1	1	1	
pipes	s/fins				Coppe	er/treated alum	inum	
pitch	fins		mm	1.8	1.8	1.8	1.8	1.8
			no.	5	4	4	2+3	2+3
rows			m ²	•		-	=	= · ·

MODELS		PX041	PX047	PX051	PX044	PX054
CHILLED WATER COIL						
quantity / configuration	no.	1	1	1	1	1
pipes/fins			Coppe	er/treated alumir	num	
pitch fins	mm	1.6	1.6	1.6	1.6	1.6
rows	no.	5	5	5	5	5
front surface	m ²	0.978	1.626	1.626	1.482	1.482
WATER CIRCUIT						
condenser type				Brazed plate		
water connections ISO 7/1	inch	Rp 1 ¼	Rp 1 ½	Rp 1 ½	Rp 1 ½	Rp 1 ½
Total water internal volume	I	21.44	32.04	32.04	31.92	32.6
DIMENSIONS						
width	mm	1200	1750	1750	1750	1750
depth	mm	890	890	890	890	890
height	mm	1970	1970	1970	1970	1970
footprint	m ²	1.068	1.5575	1.5575	1.5575	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

MOD	ELS			PX062	PX068	PX082	PX094	PX104
	r supply voltage		V/Ph/Hz		400\	′ ±10% / 3Ph /	50Hz	
	gerant circuit			double	double	double	double	double
	ORMANCE LEGA	CY (1)(2)	2."	(= = = = =		dition: 24°C, R		
air flo			m ³ /h	15900	18500	24000	25000	2500
	ene glycol		%	30 EST060	30	30 EST070	30	3
	osed Dry Cooler	IG PERFORMANCE (@ 35.0°C out	loor air tempera		EST060	E31070	EST080	EST08
	igerant			iture)		R410A		
	gross cooling capa	acity	kW	55.4	60.2	73	80.9	89.
	sensible gross cooling capacity		kW	55.3	60.2	73	78.7	86.
	(sensible/total ratio		_	1	1	1	0.97	0.9
com	pressor power inp	ut	kW	7.38+7.30	7.08+6.97	10.48+10.28	11.31+11.13	14.03+13.8
comp	oressor OA		А	13.61+13.51	13.20+13.05	18.37+18.09	20.36+20.09	26.16+25.8
		Net Sensible cooling capacity	kW	50.1	57	67.2	72.6	80.
	Upflow	fan power input	kW	2x2.39	3x1.15	3x2.16	3x2.41	3x2.4
		unit power input	kW	17.48	17.56	27.32	29.77	35.2
ç	Downflow Un	Net Sensible cooling capacity	kW kW	50.7 2x2.33	56.9 3x1.11	66.5 3x2.16	71.6 3x2.35	79. 3x2.3
Ê	Downflow Up	fan power input unit power input	kW	19.37	17.41	27.27	29.52	34.9
Configuration		Net Sensible cooling capacity	kW	51.2	57.1	67.2	72.3	80.
fig	Downflow	fan power input	kW	2x2.04	3x1.03	3x1.93	3x2.12	3x2.1
5 S	Down	unit power input	kW	18.79	17.17	26.58	28.83	34.2
0		Net Sensible cooling capacity	kW	49.6	-			
	Downflow	fan power input	kW	4.42	-	_	_	
	Frontal	unit power input	kW	19.09	-	-	_	
mixtu	ure flow		l/s	1.15+1.15	1.36+1.36	1.08+1.08	1.27+1.27	1.27+1.2
mixtu	ure condenser pres	ssure drop	kPa	26+26	17+17	11+11	15+15	15+1
unit t	otal pressure drop	kPa	33+33	27+27	17+17	23+23	23+2	
REE	COOLING PERFC	RMANCE (@ 5.0°C outdoor air ten	nperature)					
	gross cooling capa	-	kW	37.7	47.2	51.1	56.7	56
	ible gross cooling		kW	37.7	47.2	51.1	56.7	56
SHR	(sensible/total ratio	,	-	1	1	1	1	
		Net Sensible cooling capacity	kW	33.6	44.2	45.1	50	49
	Upflow	fan power input	kW	2x2.39	3x1.15	3x2.16	3x2.41	3x2.4
		unit power input	kW	4.81	3.48	6.51	7.26	7.2
_	Downflow Up	Net Sensible cooling capacity	kW	33	43.9	44.6	49.7	49
Ę		fan power input	kW kW	2x2.33	3x1.11	3x2.16	3x2.35	3x2.3
ura		unit power input Net Sensible cooling capacity	kW	4.69	3.36 44.5	6.51 45.8	7.18 50.9	7.1
Configuration	Downflow Down	fan power input	kW	2x2.04	3x1.03	45.8 3x1.93	3x2.12	3x2.1
Ö		unit power input	kW	4.11	3.11	5.82	6.39	6.3
C)		Net Sensible cooling capacity	kW	34	-			0.0
	Downflow	fan power input	kW	4.42	_	_	_	
	Frontal	unit power input	kW	4.45	_	_	_	
mixtu	ure flow	- The second	l/s	2.3	2.72	2.16	2.54	2.5
	otal pressure drop		kPa	57	38	25	34	3
	cooler pressure dr		kPa	21	20	43	27	2
AN	-							
Quar	ntity (Premium Fan	Module)	no.	2	3	3	3	
FLA			А	10	15	15	15	
LRA			A	0.2	0.3	0.3	0.3	0
Quar	ntity (Basic Fan Mo	dule, Fix speed)	no.	2	2	2	2	
FLA			A	10	10	10	10	1
LRA			A	0.2	0.2	0.2	0.2	0
	PRESSOR							
	ntity (Scroll Cooling	g System)	no.	2	2	2	2	
FLA			A	2x21	2x21	2x25	2x31	2x3
LRA			A	2x111	2x111	2x118	2x140	2x1
	ORATING COIL							
•	itity / configuration		no.	1	1	1	. 1	
pipes/fins pitch fins					er/treated alum			
		mm	1.8	1.8	1.8	1.8	1	
rows			no.	2+3	2+3	2+3	2+3	2+
	surface		m ²	1.482	2.442	2.442	2.442	2.44
	tity / configuration		no.	1	1	1		
pipes						er/treated alum		
pitch			mm	1.6	1.6	1.6	1.6	1
rows			no. m ²	5 1.482	5 2.442	5 2.442	5 2.442	
	surface							2.44

MODELS		PX062	PX068	PX082	PX094	PX104	
WATER CIRCUIT							
condenser type		Brazed plate					
water connections ISO 7/1	inch	Rp 1 ½	O. D. 54 mm* R 2**				
Total water internal volume	1	33.26	53.08	53.08	53.08	53.08	
DIMENSIONS							
width	mm	1750	2550	2550	2550	2550	
depth	mm	890	890	890	890	890	
height	mm	1970	1970	1970	1970	1970	
footprint	m ²	1.5575	2.2695	2.2695	2.2695	2.2695	

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise. (1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C - Air flow of the units refers to the standard configuration with F5 class filter.

(2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

Tab. 4d – Digital Scroll Cooling System freecooling direct expansion unit @ 100% cooling capacity, Premium Fan Module

	LS			PX041	PX047	PX051	PX044	PX054
ower	supply voltage		V/Ph/Hz		400V	±10% / 3Ph /	50Hz	
-	erant circuit			single	single	single	double	double
	ORMANCE LEGA	CY (1)(3)				dition: 24°C, R		
air flo			m ³ /h	10000	13200	15200	12500	1530
	ene glycol		%	30	30	30	30	3
	osed Dry Cooler			EST040	EST040	EST050	EST040	EST05
		IG PERFORMANCE (@ 35.0°C out	door air temperat	ure)		R410A		
	gerant gross cooling cap	a city	kW	34.9	43.6	48.2	38.6	47.
	ble gross cooling cap	,	kW	34.9 34.7	43.6	48.2	38.6	47.
	(sensible/total rati	1 2	_	1		40.2	1	-11
	pressor power inp		kW	10.17	12.51	12.48	5.77+5.67	6.84+6.7
	ressor OA		A	17.87	16.62	23.37	9.8+9.75	12.45+12
bomp		Net Sensible cooling capacity	kW	32.8	40.9	44.4	35.8	43
	Upflow	fan power input	A	2.41	2X1.35	2X1.91	2X1.33	2X1.1
	-p	unit power input	kW	12.63	15.23	16.33	14.12	17.9
		Net Sensible cooling capacity	kW	32.3	41	44.5	36	43
ы	Downflow Up	fan power input	А	2.41	2X1.3	2X1.85	2X1.28	2.1
rati		unit power input	kW	12.61	15.14	16.21	14.03	17
n6	Downflow	Net Sensible cooling capacity	kW	32.6	41.4	45	36.4	43
Configuration	Downflow	fan power input	A	2.15	2X1.13	2X1.59	2X1.11	2X1.
წ	2000	unit power input	kW	12.35	14.8	3.21	13.69	17.
	Downflow	Net Sensible cooling capacity	kW	32.4	40.8	43.3	35.8	01/0
	Frontal	fan power input	A	2.28	2X1.21	2X1.75	2X1.2	2X2.
		unit power input	kW	12.48	14.92	3.53	13.83	17.
	re flow		l/s	1397	1943	1987	0.708+0.708	0.78+0.
	re condenser pres	•	kPa	18	32	34	20+20	17+
	otal pressure drop		kPa	28	52	55	23+23	20+
		ORMANCE (@ 5.0°C outdoor air ter	• •	05.4				
	gross cooling cap	-	kW	25.4	33.9	39	28	35
sensible gross cooling capacity		kW	25.4	33.9	39	28	35	
SHR	(sensible/total rati		-	1	1	1	1	
		Net Sensible cooling capacity	kW	23	30.4	35.2	26.1	3.
	Upflow	fan power input	A kW	2.41	2X1.35	2X1.91	2X1.33	2X2.
		unit power input Net Sensible cooling capacity	kW	2.44	2.73 30.5	3.85 35.3	2.69 25.4	4.
2	Downflow Up	fan power input	A	23	30.5 2X1.3	2X1.85	25.4 2X1.28	3 2X2.
		unit power input	kW	2.41	2.63	3.73	2.59	4.
Configuration		Net Sensible cooling capacity	kW	23.2	30.8	35.8	26.4	3.
E II	Downflow	fan power input	A	2.15	2X1.13	2X1.59	2X1.11	2X1.
lo lo	Down	unit power input	kW	2.18	2.29	3.21	2.25	3.
5		Net Sensible cooling capacity	kW	23.1	30.6	35.5	26.3	31
	Downflow	fan power input	А	2.28	2X1.21	2X1.75	2X1.2	2X2.
	Frontal	unit power input	kW	2.31	2.45	3.53	2.43	4.
nixtu	re flow		l/s	1.4	1.94	1.99	1.42	1.
init to	otal pressure drop	1	kPa	73	51	53	24	
lry_c	cooler pressure di	ор	kPa	32	32	29	32	
ERFO	ORMANCE SMAP	RT (2)(3)			Air Cone	dition: 35°C, R	.H. 30%	
air flo	w(4)		m ³ /h	10000	13200	15200	12500	153
ethyle	ene glycol		%	30	30	30	30	
propo	osed Dry Cooler			EST040	EST040	EST050	EST040	EST0
ECH	IANICAL COOLIN	IG PERFORMANCE (@ 35.0°C out	door air temperat	ure)				
Refri	gerant					R410A		
otal c	gross cooling cap	acity	kW	42.5	53.9	59.7	47.9	
sensible gross cooling capacity		capacity	kW	42.5	53.9	59.7	47.9	
		0)	-	1	1	1	1	
ensil	(sensible/total rati	compressor power input		10.66	13.26	13.01	6.18+6.09	7.2+7.
ensil SHR (ut	kW			02.01	10.31+10.44	12.85+12
sensil SHR (comp		ut	А	18.53	17.42	23.91	10.51 + 10.44	12.00 1 12.
sensil SHR (comp	ressor power inp	Net Sensible cooling capacity		18.53 40.6	17.42 51.2	55.9	45.2	
sensil SHR (comp	ressor power inp	Net Sensible cooling capacity fan power input	A kW A	40.6 2.41	51.2 2x1.35	55.9 2x1.91	45.2 2x1.37	54 2x2.
sensil SHR (comp	bressor power inp pressor OA	Net Sensible cooling capacity fan power input unit power input	A kW A kW	40.6 2.41 13.13	51.2 2x1.35 15.99	55.9 2x1.91 16.86	45.2 2x1.37 15.01	54 2x2. 18.
sensil SHR (comp	ressor power inp ressor OA Upflow	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity	A kW A kW kW	40.6 2.41 13.13 40.1	51.2 2x1.35 15.99 51.3	55.9 2x1.91 16.86 56	45.2 2x1.37 15.01 45.4	54 2x2. 18. 54
sensil SHR (comp	bressor power inp pressor OA	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input	A kW A kW kW A	40.6 2.41 13.13 40.1 2.41	51.2 2x1.35 15.99 51.3 2x1.3	55.9 2x1.91 16.86 56 2x1.85	45.2 2x1.37 15.01 45.4 2x1.28	54 2x2. 18. 54 2x2.
sensil SHR (comp	ressor power inp ressor OA Upflow	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input	A kW A kW kW A kW	40.6 2.41 13.13 40.1 2.41 13.1	51.2 2x1.35 15.99 51.3 2x1.3 15.89	55.9 2x1.91 16.86 56 2x1.85 16.74	45.2 2x1.37 15.01 45.4 2x1.28 14.86	54 2x2. 18. 54 2x2. 18.
sensil SHR (comp	oressor power inporessor OA Upflow Downflow Up	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity	A kW A kW kW A kW kW	40.6 2.41 13.13 40.1 2.41 13.1 40.3	51.2 2x1.35 15.99 51.3 2x1.3 15.89 51.7	55.9 2x1.91 16.86 56 2x1.85 16.74 56.6	45.2 2x1.37 15.01 45.4 2x1.28 14.86 45.6	54 2x2. 18. 54 2x2. 18. 55
sensil SHR (comp	Downflow	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input	A kW A kW kW A kW kW A	40.6 2.41 13.13 40.1 2.41 13.1 40.3 2.15	51.2 2x1.35 15.99 51.3 2x1.3 15.89 51.7 2x1.13	55.9 2x1.91 16.86 56 2x1.85 16.74 56.6 2x1.59	45.2 2x1.37 15.01 45.4 2x1.28 14.86 45.6 2x1.16	54 2x2. 18. 54 2x2. 18. 55 2x1.
sensil SHR (comp	oressor power inporessor OA Upflow Downflow Up	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input	A kW A kW kW A kW kW A kW	40.6 2.41 13.13 40.1 2.41 13.1 40.3 2.15 12.84	51.2 2x1.35 15.99 51.3 2x1.3 15.89 51.7 2x1.13 15.55	55.9 2x1.91 16.86 56 2x1.85 16.74 56.6 2x1.59 16.22	45.2 2x1.37 15.01 45.4 2x1.28 14.86 45.6 2x1.16 14.62	54 2x2. 18. 54 2x2. 18. 55 2x1. 18.
sensil SHR (comp	Downflow	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input	A kW A kW kW A kW kW A	40.6 2.41 13.13 40.1 2.41 13.1 40.3 2.15	51.2 2x1.35 15.99 51.3 2x1.3 15.89 51.7 2x1.13	55.9 2x1.91 16.86 56 2x1.85 16.74 56.6 2x1.59	45.2 2x1.37 15.01 45.4 2x1.28 14.86 45.6 2x1.16	54 2x2. 18. 54 2x2. 18. 55 2x1.

MODE	LS			PX041	PX047	PX051	PX044	PX054
mixtu	re flow		l/s	1397	1943	1987	0.708+0.708	0.78+0.78
mixtu	re condenser pres	ssure drop	kPa	18	32	34	20+20	17+17
unit to	otal pressure drop)	kPa	28	52	55	23+23	20+20
FREE	COOLING PERFO	DRMANCE (@ 5.0°C outdoor air tem	perature)					
total g	gross cooling capa	acity	kW	40.9	54.8	65.7	47.2	58.7
sensil	ole gross cooling	capacity	kW	40.9	54.8	65.7	47.2	58.7
SHR	sensible/total ration	o)	-	1	1	1	1	1
		Net Sensible cooling capacity	kW	38.4	52.1	61.8	44.5	53.3
	Upflow	fan power input	A	2.41	2x1.35	2x1.91	2x1.37	2x1.19
		unit power input	kW	2.44	2.73	3.85	2.77	4.41
c		Net Sensible cooling capacity	kW	38.5	52.2	62	44.7	54.4
Configuration	Downflow Up	fan power input	A	2.41	2x1.3	2x1.85	2x1.28	2x2.14
Ira		unit power input	kW	2.44	2.63	3.73	2.59	4.31
igu	Downflow	Net Sensible cooling capacity	kW A	38.7	52.5	62.5	44.9	53.9
To To	Down	fan power input unit power input	kW	2.15 2.18	2x2.13 2.29	2x1.59 3.21	2x1.16 2.35	2x1.86 3.75
Õ		Net Sensible cooling capacity	kW	38.6	52.4	62.2	44.8	53.6
	Downflow	fan power input	A	2.28	2x1.21	2x1.75	2x1.20	2x2.02
	Frontal	unit power input	kW	2.31	2.45	3.53	2.43	4.07
mixtu	re flow		l/s	1.4	1.94	1.99	1.42	1.56
unit total pressure drop			kPa	72	49	52	23	27
	dry-cooler pressure drop			30	30	28	30	28
FAN		<u></u>	kPa					
Quantity (Premium Fan Module)			no.	1	2	2	2	2
FLA	ary (i ronnain rain	inoutio)	A	5	10	10	10	10
LRA			A	0.1	0.2	0.2	0.2	0.2
	Quantity (Basic Fan Module, Fix speed)		no.	1	1	1	1	1
	FLA		A	5	5	5	5	5
LRA				0.1	0.1	0.1	0.1	0.1
COMF	RESSOR							
Quan	tity (Digital Scroll	Cooling System)	no.	1	2	2	2	2
FLA			Α	25	2x16.5	2x16.2	2x15	2x16.2
LRA			А	118	2x101	2x101	2x75	2x101
EVAPO	DRATING COIL							
quant	ity / configuration		no.	1	1	1	1	1
pipes					Copper/treated aluminum			
pitch			mm	1.8	1.8	1.8	1.8	1.8
rows			no.	5	4	4	2+3	2+3
front :	surface		m ²	0.978	1.626	1.626	1.482	1.482
CHILL	ED WATER COIL	-						
quant	ity / configuration		no.	1	1	1	1	1
pipes					Coppe	er/treated alum	ninum	
pitch	fins		mm	1.6	1.6	1.6	1.6	1.6
rows	•		no.	5	5	5	5	5
front :	surface		m²	0.978	1.626	1.626	1.482	1.482
	R CIRCUIT							
	enser type					Brazed plate		
	connections ISO		inch	Rp 1 ¼	Rp 1 ½	Rp 1 ½	Rp 1 ½	Rp 1 1/2
Total	water internal volu	ume	I	21.44	32.04	32.04	31.92	32.6
DIMEN	ISIONS							
width			mm	1200	1750	1750	1750	1750
depth			mm	890	890	890	890	890
heigh	t		mm	1970	1970	1970	1970	1970
	rint		m ²	1.068	1.5575	1.5575	1.5575	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection. ** Optional. Threaded union on request

⁽¹⁾ IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) - Condensing temperature: 45°C - Air flow of the units refers to the standard configuration with F5 class filter.

MOD	ELS			PX062	PX068	PX082	PX094	PX104
Powe	r supply voltage		V/Ph/Hz		400\	/ ±10% / 3Ph /	50Hz	
	gerant circuit			double	double	double	double	double
	ORMANCE LEGA	CY (1)(3)	2.4	15000		dition: 24°C, R		0500
air fl			m ³ /h %	15900	18500	24000	25000	25000
	ene glycol osed Dry Cooler		%	30 EST060	30 EST060	30 EST070	30 EST080	30 EST080
		IG PERFORMANCE (@ 35.0°C out	door air temper		L31000	L31070	L31000	L31000
	igerant			alui oj		R410A		
	gross cooling capa	acity	kW	55.1	59.8	73.3	84	87.8
sens	ible gross cooling	capacity	kW	55.1	59.8	73.3	83.8	85.6
SHR	(sensible/total rational second secon	0)	-	1	1	1	1	0.98
	pressor power inp	ut	kW	7.46+7.38	7.13+7.08	11.56+11.82	13.08+13.28	14.03+14.
com	pressor OA		A	13.93+13.61	13.51+13.2	19.71+20.08	1719+17.4	25.32+25.5
	l la flasse	Net Sensible cooling capacity	kW	49.9	56.9	67.6	77.5	79.
	Upflow	fan power input unit power input	A kW	2x2.39 19.65	3x1.15 17.7	3x2.16 29.91	3x2.41 33.75	3x2.4 35.5
		Net Sensible cooling capacity	kW	50.4	56.5	66.8	77	78.0
5	Downflow Up	fan power input	A	2X2.33	3x1.11	3x2.16	3x2.35	3x2.3
rati	·	unit power input	kW	19.53	17.57	29.89	33.44	35.3
Ing	Downflow	Net Sensible cooling capacity	kW	51	56.7	67.6	77.5	79.3
Configuration	Down	fan power input	A	2x2.04	3x1.03	3x1.93	3x2.12	3x2.12
ŏ		unit power input Net Sensible cooling capacity	kW kW	18.95 49.5	17.33	29.5	32.81	34.62
	Downflow	fan power input	A	49.5 2x2.21	_	_	_	-
	Frontal	unit power input	kW	19.24	_	_	_	_
mixt	ure flow	l/s	1.149+1.149	1.359+1.359	1.08+1.08	1.267+1.267	1.267+1.267	
mixt	ure condenser pres	ssure drop	kPa	26+26	17+17	11+11	15+15	15+15
	total pressure drop		kPa	33+33	27+27	17+17	23+23	23+23
		ORMANCE (@ 5.0°C outdoor air ter						
total gross cooling capacity		kW	40.6	49.4	52.1	59.3	59.3	
	ible gross cooling		kW	40.6	49.4	52.1	59.3	59.3
	(sensible/total ratio	Net Sensible cooling capacity	kW	1 35.8	1 45.6	1 46.8	1 52.1	52
	Upflow	fan power input	A	2x2.39	3x1.15	3x2.16	3x2.41	3x2.41
	ophon	unit power input	kW	4.81	3.48	6.51	7.25	7.25
		Net Sensible cooling capacity	kW	35.9	46.1	45.6	52.3	52.2
Configuration	Downflow Up	fan power input	Α	2X2.33	3x1.11	3x2.16	3x2.35	3x2.35
rat		unit power input	kW	4.69	3.36	6.51	7.08	7.08
igu	Downflow	Net Sensible cooling capacity	kW	36.5	46	46.8	53	52.0
Ju o	Down	fan power input unit power input	A kW	2x2.04 4.11	3x1.03 3.13	3x1.93 5.82	3x2.12 6.39	3x2.12 6.39
o		Net Sensible cooling capacity	kW	36.2			0.09	0.08
	Downflow	fan power input	A	2x2.21	_	-	_	-
	Frontal	unit power input	kW	4.45	-	-	-	-
	ure flow		l/s	2.3	2.72	2.16	2.54	2.54
	total pressure drop		kPa	57	38	25	33	34
	cooler pressure di		kPa	9	9	18	12	12
	ORMANCE SMAF	11 (<i>2</i>)(3)	m ³ /h	15900	Air Con 18500	dition: 35°C, R 24000	. H. 30% 25000	25000
	ow(4) ene glycol		mº/n %	30	18500	24000	25000	25000
	osed Dry Cooler		/0	EST060	EST060	EST070	EST080	EST080
		IG PERFORMANCE (@ 35.0°C out	door air tempera			2010/0	201000	_0,000
	igerant			,		R410A		
total	gross cooling capa	acity	kW	67.4	74.6	90.6	102.9	106.3
sens	ible gross cooling	capacity	kW	67.4	74.6	90.6	102.9	106.3
SHR	(sensible/total ratio	0)	_	1	1	1	1	
com	pressor power inp	ut	kW	7.91+7.82	7.63+7.47	12.44+12.76	13.91+14.29	14.79+15.13
	pressor OA		A	14.51+14.23	14.15+13.75	20.96+21.42	18.1+18.53	26.26+26.67
comp		Net Sensible cooling capacity	kW	62.4	71.7	85	96.7	100.2
com	Upflow	fan power input	A	2x2.39	3x1.19	3x2.16	3x2.41	3x2.41 37.25
com	Upflow		kW	20.49	18.68	31.78 84.1	35.56 95.8	37.2
com	Upflow	unit power input	L/\//	600	71 9	04.1	30.0	
		Net Sensible cooling capacity	kW A	62.8 2x2.33	71.3 3x1.11			3x2 3/
	Upflow Downflow Up		kW A kW	62.8 2x2.33 20.42	71.3 3x1.11 18.46	3x2.16 31.71	3x2.35 35.28	
	Downflow Up	Net Sensible cooling capacity fan power input	А	2x2.33	3x1.11	3x2.16	3x2.35	37
	Downflow Up	Net Sensible cooling capacity fan power input unit power input	A kW kW A	2x2.33 20.42	3x1.11 18.46	3x2.16 31.71	3x2.35 35.28	37 102.7
Configuration	Downflow Up	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input	A kW kW A kW	2x2.33 20.42 63.4 2x2.04 19.84	3x1.11 18.46 71.5	3x2.16 31.71 84.8	3x2.35 35.28 96.5	33 102.3 3x1.2
	Downflow Up Downflow Down	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity	A kW kW A kW kW	2x2.33 20.42 63.4 2x2.04 19.84 61.9	3x1.11 18.46 71.5 3x1.03 18.22	3x2.16 31.71 84.8 3x1.93 31.02	3x2.35 35.28 96.5 3x2.12	33 102.3 3x1.2
	Downflow Up	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input	A kW A kW kW A	2x2.33 20.42 63.4 2x2.04 19.84 61.9 2x2.27	3x1.11 18.46 71.5 3x1.03	3x2.16 31.71 84.8 3x1.93 31.02	3x2.35 35.28 96.5 3x2.12	37 102.7 3x1.2
Configuration	Downflow Up Downflow Down Downflow Frontal	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity	A kW A kW kW A kW	2x2.33 20.42 63.4 2x2.04 19.84 61.9 2x2.27 20.22	3x1.11 18.46 71.5 3x1.03 18.22 – –	3x2.16 31.71 84.8 3x1.93 31.02 - -	3x2.35 35.28 96.5 3x2.12 34.59 – –	37 102.7 3x1.2 33.55 - - -
Configuration	Downflow Up Downflow Down Downflow	Net Sensible cooling capacity fan power input unit power input Net Sensible cooling capacity fan power input Net Sensible cooling capacity fan power input unit power input unit power input	A kW A kW kW A	2x2.33 20.42 63.4 2x2.04 19.84 61.9 2x2.27	3x1.11 18.46 71.5 3x1.03 18.22	3x2.16 31.71 84.8 3x1.93 31.02	3x2.35 35.28 96.5 3x2.12	3x2.38 37 102.7 3x1.2 33.55 - - - 1.267+1.267 15+18

MODE	ELS			PX062	PX068	PX082	PX094	PX104
FREE	COOLING PERFO	DRMANCE (@ 5.0°C outdoor air tem	perature)					
total	gross cooling cap	acity	kW	60	80.1	86.8	97.9	96.8
sensi	ible gross cooling	capacity	kW	60	80.1	86.8	97.9	96.8
SHR	(sensible/total rati	o)	-	1	1	1	1	1
		Net Sensible cooling capacity	kW	60.8	76.5	80.6	89.7	89.5
	Upflow	fan power input	A	2x2.39	3x1.19	3x2.16	3x2.41	3x2.41
		unit power input	kW	4.81	3.6	6.51	7.25	7.25
~		Net Sensible cooling capacity	kW	60.9	76.8	80.3	90.8	89.8
ē	Downflow Up	fan power input	Α	2x2.33	3x1.11	3x2.16	3x2.35	3x2.35
rat		unit power input	kW	4.69	3.36	6.51	7.08	7.08
Configuration	Downflow	Net Sensible cooling capacity	kW	61.4	77	81.3	90.6	90.4
, uf	Down	fan power input	A	2x2.03	3x1.03	3x1.93	3x2.12	3x2.12
ŭ		unit power input	kW kW	4.11	3.12	5.82	6.39	6.39
	Downflow	Net Sensible cooling capacity	A	61.1	_	-	_	_
	Frontal	fan power input unit power input	kW	2x2.27 4.57	_	_	_	_
mixti	are flow		/s	2.3	2.72	2.16	2.54	2.54
				2.3 55		2.16	2.54	2.54
unit total pressure drop dry-cooler pressure drop			kPa kPa		37 8	18	11	11
,	cooler pressure di	юр	кга	0	0	10	11	
FAN								
Quar	Quantity (Premium Fan Module)			2	3	3	3	3
FLA			A	10	15	15	15	15
LRA			А	0.2	0.3	0.3	0.3	0.3
Quantity (Basic Fan Module, Fix speed)			no.	2	2	2	2	2
FLA			Α	10	10	10	10	10
LRA	LRA			0.2	0.2	0.2	0.2	0.2
сом	PRESSOR							
Quar	ntity (Digital Scroll	Cooling System)	no.	2	2	4	4	4
FLA	ility (Digital Coroli		A	2x21	2x21	4x15	4x15.5	4x16.2
LRA			A	2x111	2x111	4x75	4x101	4x101
EVAP	ORATING COIL						-	
	tity / configuration		no.	1	1	1	1	1
•	, ,		110.	I			-	
pipes			m m	1.8	1.8	er/treated alumir 1.8	1.8	1.8
pitch			mm	2+3	2+3	2+3	2+3	2+3
rows			no. m ²	2+3 1.482	2+3	2+3	2+3 2.442	2+3
	surface		m -	1.462	2.442	2.442	2.442	2.442
	LED WATER COIL							
	tity / configuration		no.	1	1	1	1	1
pipes						er/treated alumir		
pitch	fins		mm	1.6	1.6	1.6	1.6	1.6
rows			no.	5	5	5	5	5
	surface		m²	1.482	2.442	2.442	2.442	2.442
	enser type					Brazed plate		
water	water connections ISO 7/1		inch	Rp 1 ½		O. D. 54 mi	m* R 2**	
Total	water internal volu	ume	I	33.26	53.08	53.08	53.08	53.08
DIME	NSIONS							
width	ı		mm	1750	2550	2550	2550	2550
dept			mm	890	890	890	890	890
heigh			mm	1970	1970	1970	1970	1970
	rint		m ²	1.5575	2.2695	2.2695	2.2695	2.2695

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise. (1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C - Air flow of the units refers to the standard configuration with F5 class filter.

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) - Condensing temperature: 45°C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

Tab. 4e – Scroll Cooling System dualfluid direct expansion unit @ 100% cooling capacity, Premium Fan Module

PXxxx D/H series

Refrigerant circuit single single single single single double	MOD	-			PX041	PX047	PX051	PX044	PX054		
PERFORMANCE LEGACY (1)(2) m ^{Ph} Too Tar Condition: ¥Cr, 11, 80% ait flow m ^{Ph} 000 15200 12500 ethylene glycol % 0 0 0 0 Methanization % 0 0 0 0 0 Methanization % 38.7 45.3 52 42.8 SHR (sensible cooling capacity kW 86.7 45.3 52 42.7 SHR (sensible cooling capacity kW 86.7 45.3 52 42.7 Sensible cooling capacity kW 86.7 42.8 81.9 4.3 1 1 1.3 Ownflow Up Ind power input A 1.73 22.1.3 2.4.1.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 2.4.3 1.4.5 1.4.3 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.5 1.4.6 2.4.6.6 1.5 1.6.1		11, 0		V/Ph/Hz				-			
air flow methylene glycen ethylene glycen ethylene glycen total gross sociing capacity kWV 38.7 45.3 95.2 42.3 Ferfigerant Terrigerant Errigera			OV (1) (0)		single				double		
ethylene glycol space (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			ICY (1)(2)	m ³ /b	10000				1530		
Description Herion First colspan="2">Herion First colspan="2">Herion First colspan="2">Herion Sing consoling capacity KW 38.7 45.3 52 4.2.8 Sing consoling capacity KW 38.7 4.2.8 3.8.1 2.8.15.4.2 2.5.2 Sing colspan="2">First colspan="2" Merit colspan="2" KW 3.4.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.2 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 2.1.3 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1550</td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1550</td>										1550
Dentigerant FR104 earnable gross cooling capacity KW 36.5 45.3 52 42.7 SPRI gensible-tooling capacity KW 36.5 45.3 52 42.7 SPRI gensible-tooling capacity KW 82.6 9.32 11.26 4.55.4.55 5.5 SecomPessor OW Intel SecomPessor OW A 15.1 17.44 42.8 48.9.9 9.9 Upflow fan power input und power input und power input A 17.7 22.13 22.14.9 22.13 22.14.9 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.13 24.14 24.14 24.11 24.15 11.61 24.14 24.16 24.16 24.14 24.16 24.14 24.16 24.14 24.16 24.14 24.16 24.14 24.16 24.14 24.16 24.16			G PERFORMANCE (1)	70	0	0	0	0			
total gross cooling capacity SHR (sensible cross cooling capacity SHR (sensible cross cooling capacity SHR (sensible cross cooling capacity kW SHR (sensible cross capacity kW SHR							R410A				
sensible prose colling capacity kW 36.5 45.3 5.2 42.7 SMR (sensible/collar lato) - 0.94 1		-	acity	kW	38.7	45.3		42.8	52.		
KW 8.28 9.32 11.28 4.55+4.35 5.5 KW 34.7 42.6 44.2 23.8 39.9 Mark Sensible cooling capacity KW 34.7 24.2.6 84.9 39.9 Mark Sensible cooling capacity KW 10.07 12.05 15.11 11.78 Mark Sensible cooling capacity KW 34.1 42.7 44.3 40.1 Mark Sensible cooling capacity KW 34.3 43.7 44.3 40.1 Mark Sensible cooling capacity KW 34.3 44.27 44.3 44.7 44.3 Mark Sensible cooling capacity KW 34.8 42.4 44.7 39.8 44.7 14.8 Mark Sensible cooling capacity KW 83.6 54.9 55.4 42.2 Mark Sensible cooling capacity KW 35.3 48.8 54.9 45.3 <		o o 1		kW	36.5	45.3	52	42.7	52.		
Decompression OA Net Sensible cooling capacity KW 34,7 14,24 22,8 8,15+8,14 10,81 Upflow fan power input KW 34,7 42,6 48,2 39,9 Unit power input KW 10,77 12,05 15,11 11,87 Downflow fan power input A 2,47 2x1,33 2x1,33 40,1 Downflow fan power input A 2,47 2x1,33 2x1,48 2x1,33 40,1 Downflow fan power input AV 10,51 11,85 14,49 11,79 11,86 Downflow fan power input AV 10,51 11,81 14,57 21,84 24,14 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,24 47,73 24,34 46,4 0,52 5,5 5,9 5,5 5,9	SHR	(sensible/total ratio	0)	-	0.94	1	1	1			
Note Sensible cooling capacity KW 34.7 42.6 44.2 39.9 Upflow In power input A 1.78 24.135 2x1.37 11.87 Net Sensible cooling capacity KW 10.07 12.05 15.11 11.87 Net Sensible cooling capacity KW 34.1 42.7 48.3 40.1 Image of the power input A 2.47 2x1.3 2x1.85 2x1.33 Unit power input A 2.47 2x1.3 2x1.46 2x1.47 43.3 Downflow Net Sensible cooling capacity kW 34.3 34.47 43 Downflow Net Sensible cooling capacity kW 34.8 42.4 47.9 39.8 Downflow Net Sensible cooling capacity kW 9.82 11.71 14.76 10.10 Downflow Int power input AV 9.83 64.6 51.1 10.10 Downflow Net Sensible cooling capacity KW 37.6 53.9 59.5 49.2	com	pressor power inp	out	kW	8.26	9.32	11.26	4.55+4.55	5.53+5.5		
Uption In a power input A 1.78 241.35 241.31 241.37 Image: Construct of the second of the sec	com	oressor OA							10.81+10.8		
Number Numer Numer Numer <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>47</td>									47		
Downflow Up Instruction of the second s		Upflow							2x2.2		
By bounding up is a power input input with with the set of the s									15.8 47		
Downtrow Frontal Net Sensible cooling capacity and power input KW 34.8 42.4 47.9 39.8 Toronal fan power input KW 9.82 11.77 14.79 11.61 Sondensing section (H models only) inter influet temp: 30°Ccondensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C water flow KPa 17 12 16 10+10 HULLED WATER PERFORMANCE (1) inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C 48.8 54.9 45.3 SHR (ansibile forcing capacity kW 37.6 50.9 50.5 40.2 Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upticw fan power input A 2.73 3.85 2.77 Net Sensible cooling capacity kW 3.3 46.5 51.6 43 Downtlow Up fan power input A 2.47 2x1.3 2x1.64 2x1.37 Downtlow Up fan power input A	ç	Downflow Up							47 2x2.1		
Downtrow Frontal Net Sensible cooling capacity and power input KW 34.8 42.4 47.9 39.8 Toronal fan power input KW 9.82 11.77 14.79 11.61 Sondensing section (H models only) inter influet temp: 30°Ccondensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C water flow KPa 17 12 16 10+10 HULLED WATER PERFORMANCE (1) inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C 48.8 54.9 45.3 SHR (ansibile forcing capacity kW 37.6 50.9 50.5 40.2 Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upticw fan power input A 2.73 3.85 2.77 Net Sensible cooling capacity kW 3.3 46.5 51.6 43 Downtlow Up fan power input A 2.47 2x1.3 2x1.64 2x1.37 Downtlow Up fan power input A	₽	Dowiniow op							15.4		
Downtrow Frontal Net Sensible cooling capacity and power input KW 34.8 42.4 47.9 39.8 Toronal fan power input KW 9.82 11.77 14.79 11.61 Sondensing section (H models only) inter influet temp: 30°Ccondensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C water flow KPa 17 12 16 10+10 HULLED WATER PERFORMANCE (1) inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C 48.8 54.9 45.3 SHR (ansibile forcing capacity kW 37.6 50.9 50.5 40.2 Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upticw fan power input A 2.73 3.85 2.77 Net Sensible cooling capacity kW 3.3 46.5 51.6 43 Downtlow Up fan power input A 2.47 2x1.3 2x1.64 2x1.37 Downtlow Up fan power input A	n,								48		
Downtrow Frontal Net Sensible cooling capacity and power input KW 34.8 42.4 47.9 39.8 Toronal fan power input KW 9.82 11.77 14.79 11.61 Sondensing section (H models only) inter influet temp: 30°Ccondensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C-condensation temp: 45°C water flow KPa 17 12 16 10+10 HULLED WATER PERFORMANCE (1) inter influet temp: 30°C-condensation temp: 45°C inter influet temp: 30°C 48.8 54.9 45.3 SHR (ansibile forcing capacity kW 37.6 50.9 50.5 40.2 Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upticw fan power input A 2.73 3.85 2.77 Net Sensible cooling capacity kW 3.3 46.5 51.6 43 Downtlow Up fan power input A 2.47 2x1.3 2x1.64 2x1.37 Downtlow Up fan power input A	fig								2x1.9		
Downflow Frontal Net Sensible cooling capacity ant power input KW 34.8 42.4 47.9 39.8 Tordnesing section (H models only) Net Sensible cooling capacity KW 9.82 11.77 14.79 11.61 atter intel temp: 30°Ccondensation temp: 45°C water side pressure drop KPa 17 12 16 10+10 MILLED WATER PERFORMANCE (1) vww 37.6 53.9 56.5 40.2 Total gross cooling capacity kW 33.6 46.1 51.1 42.6 Mark Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upticw fan power input A 1.78 2.73 3.85 2.77 Net Sensible cooling capacity kW 33.6 46.5 51.6 43 Downflow Up fan power input A 2.47 2.x1.3 2x1.45 2x1.33 Downflow Up fan power input A 2.47 2.x1.3 2x1.64 2x1.64 Downflow Up fan power input A	5	Down							14.9		
Downflow Frontal tan power input A 1.53 2×1.21 2×1.75 2×1.24 ondensing section (H models only) atter intet temp: 30°C-condensation temp: 45°C watter side pressure drop VIS 0.882 1041 1223 0.513+0.484 0.621 vatter lide tremp: 30°C-condensation temp: 45°C watter side pressure drop kPa 17 12 16 10+10 vatter side pressure drop kPa 17 12 6 10+10 otal gross cooling capacity kW 37.6 53.9 59.5 49.2 sensible cooling capacity kW 33.6 46.1 51.1 42.6 Very Met Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Very Met Sensible cooling capacity KW 32.9 46.2 51.6 43 varit power input A 1.76 2×1.33 11.13 2×1.33 Very To power input KW 32.9 46.2 51.6 43 Downflow Up To power input KW 2.25	5								47		
Frontal inderesting section (H models only) rater inlet temp: 30°Ccondensation temp: 45°C III.27 14.79 11.61 valer flow water side pressure drop HILLED WATER PERFORMANCE (1) V/s 0.882 1041 1223 0.513+0.484 0.621 Valer side pressure drop HILLED WATER PERFORMANCE (1) KPa 17 12 16 10+10 HILLED WATER PERFORMANCE (1) KW 35.3 48.8 54.9 45.3 SHR (sensible) cooling capacity KW 35.3 48.8 54.9 45.3 SHR (sensible) cooling capacity KW 33.6 46.1 51.1 42.6 Downflow Up fan power input A 17.8 2x1.3 2x1.85 2x1.3 Downflow Up fan power input A 2.25 2.63 3.73 2.69 Downflow Up nat power input A 2.22 2x1.3 2x1.46 4x1.61 Unit power input A 2.22 2x1.3 2x1.44 2x1.81 Downflow Up Net Sensible cooling capacity KW 33.8 46.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2x2.0</td>									2x2.0		
Description Part of the sensure drop KPa 17 121 0.513+0.484 0.621 Valuer flow valuer side pressure drop kPa 17 12 16 10+10 Valuer flow valuer side pressure drop kPa 17 12 16 10+10 Valuer flow valuer side press cooling capacity kW 37.6 53.9 59.5 49.2 Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Valuer flow value flow valuer input A 1.78 2x1.35 1x1.91 2x1.37 Valuer flow valuer input kW 31.1 46.5 51.6 43.2 Valuer flow valuer input kW 2.5 2.83 3.73 2.80 Net Sensible cooling capacity kW 33.1 46.5 51.6 43.3 Mout Sensible cooling capacity kW 33.8 46.4 51.4 42.8 Mater flow valuer flow valuer input kW 1.56 2.45 3.53 2.51 Matter flow valuer input kW		Frontal	unit power input	kW	9.82	11.77	14.79	11.61	15.2		
water flow I/s 0.882 1041 1223 0.513-0.494 0.621 water side pressure drop kPa 17 12 16 10+10 valuer side pressure drop kW 37.6 53.9 59.5 49.2 valuer side pressure drop - 0.94 0.91 0.92 0.92 SHR (sensible/cotal ratio) - 0.94 0.91 0.92 0.92 Valuer transport A 1.78 2.4135 1.11 42.6 Valuer transport KW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2.41.3 2.41.6 2.41.3 Downflow Up fan power input KW 2.25 2.29 3.31 2.45.1 Downflow Dipower input KW 2.25 2.29 3.31 2.45.1 Matter flow Net Sensible cooling capacity KW 3.25 5.1.6 4.3 mituter flow Net Sensible cooling capacity KW 3.2.5 </td <td>ond</td> <td>ensing section (H</td> <td>I models only)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ond	ensing section (H	I models only)								
water side pressure drop kPa 17 12 16 10+10 HILLED WATER PERFORMANCE (1) otal gross cooling capacity kW 37.6 53.9 59.5 49.2 SHILLED WATER PERFORMANCE (1) otal gross cooling capacity kW 37.6 53.9 59.5 49.2 SHR (sensible) cooling capacity kW 33.6 48.8 54.9 45.3 SHR (sensible) cooling capacity kW 33.6 46.1 51.1 42.6 Not Sensible cooling capacity kW 38.6 46.1 51.2 42.6 Downflow Up fan power input A 2.47 2.43.3 2.41.8 2.41.3 Downflow Up fan power input AV 2.22 2.26.3 3.7 2.69 Net Sensible cooling capacity kW 33.8 46.4 51.4 42.6 Downflow Tempower input A 1.53 2.21.2 2.17.3 2.82.2 Downflow Tempower input A 1.53 2.51 2.51 mit total pressure drop kPa	ater	inlet temp: 30°C	-condensation temp: 45°C								
Description Description Net Sensible cooling capacity kW 37.6 53.9 59.5 49.2 SHR (ensible/rotal ratio) - 0.94 0.91 0.92 0.92 SHR (ensible/rotal ratio) - 0.94 0.91 0.92 0.92 Upflow fan power input A 1.78 2×1.35 1×1.91 2×1.37 Image: the power input A 1.78 2×1.35 1×1.91 2×1.37 Image: the power input A 2.47 2×1.3 2×1.48 2×1.33 Image: the power input A 2.47 2×1.3 2×1.48 2×1.33 Image: the power input A 2.22 2×1.13 2×1.61 2×1.61 Image: the power input A 2.22 2×1.13 2×1.61 2×1.61 Downflow fan power input KW 2.56 2.42 2×1.51 2×1.61 Downflow no. 1 1 1 2×1.55 2×1.61 Downflow inpoter input	wate	r flow		l/s	0.882	1041	1223	0.513+0.484	0.621+0.59		
total gross cooling capacity KW 37.6 53.9 59.5 49.2 sensible gross cooling capacity KW 35.3 48.8 54.9 45.3 SHR (sensible/total ratio) – 0.94 0.91 0.92 0.92 Net Sensible cooling capacity KW 33.6 46.1 51.1 42.6 Image: Sensible cooling capacity KW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.3 2x1.85 2x1.33 unit power input KW 2.5 2.29 3.31 2.63 3.73 2.69 Downflow Up fan power input KW 2.25 2.29 3.31 2.85 Mottreemound to power input A 1.53 2x1.2 2x1.75 2x1.24 Intit total pressure drop KW 38.8 46.4 51.4 42.8 Miture flow Ino. 1 1 1 1 1 Int power input KW 3.6	wate	r side pressure dro	qq	kPa	17	12	16	10+10	11+1		
Sensible gross cooling capacity kW 35.3 48.8 54.9 45.3 SHR (sensible/cotal ratio) - 0.94 0.91 0.92 0.92 SHR (sensible/cotal ratio) fan power input A 1.78 2x1.35 1x1.91 2x1.37 Upflow fan power input A 1.78 2x1.35 1x1.91 2x1.37 Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.3 2x1.85 2x1.33 unit power input A 2.47 2x1.3 2x1.64 2x1.61 Downflow fan power input A 1.53 2x1.21 2x1.64 2x1.61 Unit power input A 1.53 2x1.21 2x1.64 2x5.1 Init total pressure drop kPa 100 71 85 50 AN 0.01 0.1 0.1 0.1 0.2 20 Unit total pressure drop kPa 100											
SHR (sensible/total ratio) - 0.94 0.91 0.92 0.92 Net Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upflow fan power input A 1.78 2x1.35 1x1.91 2x1.37 Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.33 2x1.33 Downflow fan power input A 2.47 2x1.3 2x1.33 Downflow fan power input A 2.25 2.29 3.31 2.69 Downflow fan power input A 2.25 2.29 3.31 2.35 Downflow fan power input KW 3.8 46.4 51.4 42.8 fan power input kW 1.53 2x1.13 2x1.24 2x1.75 2x1.24 Init total pressure drop kW 1.56 2.45 3.53 2.51 Ouantity (Prenium Fan Module) no. <t< td=""><td></td><td>0 0 1</td><td>5</td><td>kW</td><td>37.6</td><td>53.9</td><td>59.5</td><td>49.2</td><td>56</td></t<>		0 0 1	5	kW	37.6	53.9	59.5	49.2	56		
Not Sensible cooling capacity kW 33.6 46.1 51.1 42.6 Upflow fan power input A 1.78 2x1.35 1x1.91 2x1.37 Init power input KW 1.81 2.73 3.85 2.77 Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.33 2x1.85 2x1.33 unit power input A 2.22 2x1.33 2x1.64 2x1.61 Downflow Net Sensible cooling capacity kW 33.1 46.5 51.6 43 Downflow Net Sensible cooling capacity kW 33.8 46.4 51.4 42.8 mixture flow unit power input A 1.53 2x1.21 2x1.75 2x1.24 Unit total pressure drop I/s 1.79 2.57 2.84 2.35 Ouantity (Premium Fan Module, Fix speed) no. 1 1 1 2 LPA A				kW					53		
Upflow fan power input A 1.78 2x1.35 1x1.91 2x1.37 unit power input kW 1.81 2.73 3.85 2.77 Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.33 2x1.85 2x1.33 Downflow Up over input kW 2.5 2.63 3.73 2.69 Downflow Down Net Sensible cooling capacity kW 33.1 46.5 51.6 43 Downflow Topowr input A 2.22 2x1.13 2x1.64 2x1.64 Downflow Trontal to power input KW 33.8 46.4 51.4 42.8 Init total pressure drop Net Sensible cooling capacity kW 1.56 2.45 3.53 2.51 Mittotal pressure drop Init power input kW 1.66 2.45 3.55 50 A 1.00 7.7 2.57 2.84 2.35 50 A	SHR	(sensible/total ration	,						0.9		
Nome unit power input kW 1.81 2.73 3.85 2.77 Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up nower input A 2.47 2x1.3 2x1.85 2x1.33 Downflow Down Vest Sensible cooling capacity kW 2.31 46.5 51.6 43 Downflow Down Net Sensible cooling capacity kW 2.25 2.29 3.31 2.35 Downflow Down Net Sensible cooling capacity kW 3.8 46.4 51.4 42.8 Init power input A 1.53 2x1.21 2x1.75 2x1.24 Init power input KW 1.56 2.45 3.53 2.51 mixture flow I/s 1.79 2.57 2.84 2.35 Outantity (Premium Fan Module) no. 1 1 1 2 Classic Fan Module, Fix speed) no. 1 1 1 1 Classic Fan Module, Fix speed) no									49		
Net Sensible cooling capacity kW 32.9 46.2 51.2 42.6 Downflow Up fan power input A 2.47 2x1.3 2x1.85 2x1.33 Downflow Up nuit power input kW 2.5 2.63 3.73 2.69 Downflow Down Net Sensible cooling capacity kW 33.1 46.5 51.6 43 Downflow Down nuit power input A 2.22 2x1.13 2x1.64 2x1.61 Downflow Town input A 2.22 2.29 3.31 2.35 Downflow Frontal Net Sensible cooling capacity kW 3.8 46.4 51.4 42.8 Init total pressure drop Net Sensible cooling capacity kW 1.56 2.45 3.53 2.51 Muitter flow Init total pressure drop KPa 100 71 85 50 A 5 5 5 10 1 1 1 1 Quantity (Prenium Fan Module, Fix speed) no. 1 <td< td=""><td></td><td>Upflow</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2x2.2</td></td<>		Upflow							2x2.2		
Downflow Up unit power input fan power input unit power input A 2.47 2x1.3 2x1.85 2x1.33 Downflow Down test Sensible cooling capacity kW 2.5 2.63 3.73 2.69 Downflow Down test Sensible cooling capacity kW 2.25 2.29 3.31 2.35 Downflow Prontal test Sensible cooling capacity kW 2.25 2.29 3.31 2.35 Mownflow Prontal test Sensible cooling capacity kW 3.8 46.4 51.4 42.8 mikture flow unit power input A 1.53 2x1.21 2x1.75 2x1.24 Moutel Trop Sensible cooling capacity kW 1.56 2.45 3.53 2.51 mikture flow unit power input M 1.58 2x1.7 2.84 2.35 Moutel Fendo No 1 1 1 2 Quantity (Premium Fan Module) no. 1 1 1 1 EA A 0.1 0.1 0.1									4.5		
$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \ \ \begin{tabular}{ c c } \hline \hline \ \ \hline \begin{tabular}{ c c } \hline \hline \ \ \begin{tabular}{ c c c } \hline \hline \ \ \ \begin{tabular}{$	_	D . (1)							49		
Downflow Frontal Net Sensible cooling capacity kW 33.8 46.4 51.4 42.8 in power input A 1.53 2x1.21 2x1.75 2x1.24 mixture flow //s 1.79 2.57 2.84 2.35 unit total pressure drop kPa 100 71 85 50 AN Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 25 31 34 2x15 LRA A 118 140 174 2x75 VAPORATING COIL A 118 1.8	Ê.	Downlow op							2x2. 4.4		
Downflow Frontal Net Sensible cooling capacity kW 33.8 46.4 51.4 42.8 fan power input unit power input A 1.53 2x1.21 2x1.75 2x1.24 mixture flow unit total pressure drop KW 1.56 2.45 3.53 2.51 Maximum flow unit total pressure drop KPa 100 71 85 50 AN Dougle no. 1 1 1 2 Quantity (Premium Fan Module) no. 1 1 1 1 2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 5 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Scroll Cooling System) no. 1 1 1 1 Quantity / configuration no.	nra								4.		
Downflow Frontal Net Sensible cooling capacity kW 33.8 46.4 51.4 42.8 in power input A 1.53 2x1.21 2x1.75 2x1.24 mixture flow //s 1.79 2.57 2.84 2.35 unit total pressure drop kPa 100 71 85 50 AN Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 25 31 34 2x15 LRA A 118 140 174 2x75 VAPORATING COIL A 118 1.8	lig	Downflow							2x1.9		
Downflow Frontal Net Sensible cooling capacity kW 33.8 46.4 51.4 42.8 fan power input unit power input A 1.53 2x1.21 2x1.75 2x1.24 mixture flow unit total pressure drop KW 1.56 2.45 3.53 2.51 Maximum flow unit total pressure drop KPa 100 71 85 50 AN Dougle no. 1 1 1 2 Quantity (Premium Fan Module) no. 1 1 1 1 2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 5 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Scroll Cooling System) no. 1 1 1 1 Quantity / configuration no.	5	Down	· ·						3.8		
Downflow Frontal unit power input A 1.53 WW 2x1.21 1.56 2x1.75 2x1.24 2x1.75 2x1.24 2x1.24 2x1.75 2x1.24 2x1.75 2x1.24 mixture flow unit total pressure drop 1,156 2.45 3.53 2.51 mixture flow unit total pressure drop kW 1.79 2.57 2.84 2.35 Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Scroll Cooling System) no. Copper/treated aluminum 1 1 1 pipes/fins mo 1.8 1.8 1.8 1.8	o								49		
Frontal unit power input kW 1.56 2.45 3.53 2.51 mixture flow unit total pressure drop 1/s 1.79 2.57 2.84 2.35 AN 100 71 85 50 AN 1 1 1 2 Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 5 Quantity (Scroll Cooling System) no. No. 1 1 1 1 Quantity / configuration no. 1 1 1 1 <									2x2.0		
kPa 100 71 85 50 AN		Frontal		kW	1.56	2.45	3.53	2.51	4.1		
AN no. 1 1 1 2 Guantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 0.1 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 0.1 0.1 0.1 0.1 0.1 0.1 Compressor No. No. No. 1 1.0.1 0.1 0.1 Compression No. A 18 140 174 2x75 Compositive (Scroll Cooling System) no. 1 1 1 1 quantity / configuration no. 1 1 1 1 1 pipes/fins No. <td>mixtu</td> <td>ure flow</td> <td>· ·</td> <td>l/s</td> <td>1.79</td> <td>2.57</td> <td>2.84</td> <td>2.35</td> <td>2</td>	mixtu	ure flow	· ·	l/s	1.79	2.57	2.84	2.35	2		
Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 FLA A 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 Quantity (Scroll Cooling System) no. T T 1 1 1 1 Quantity (Scroll Cooling System) no. A 18 140 174 2x75 EVAPORATING COLL mm 1.8 1.8 1.8 1.8 1.8 right fins mm 1.8 1.8 1.8 1.8 1.8 rows no. 5 4	unit t	otal pressure drop)	kPa	100	71	85	50	e		
Quantity (Premium Fan Module) no. 1 1 1 2 FLA A 5 5 5 10 FLA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 5 FLA A 0.1 0.1 0.1 0.1 FLA A 5 5 5 5 FA A 0.1 0.1 0.1 0.1 Compresson no. 1 0.1 0.1 0.1 Quantity (Scroll Cooling System) no. 5 31 34 2x15 LRA A 118 140 174 2x75 VAPORATING COIL mm 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 roms urface m ² 0.978	AN										
FLA A 5 5 5 10 LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 FLA A 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 Compressor Quantity (Scroll Cooling System) no. Image: Solid System in the image: Solid System in		atity (Promium Fan	Module)	no	1	1	1	2			
LRA A 0.1 0.1 0.1 0.2 Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 FLA A 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 FLA A 0.1 0.1 0.1 0.1 COMPRESSOR No. 0.1 0.1 0.1 0.1 Quantity (Scroll Cooling System) no. FLA A 25 31 34 2x15 RA A 18 140 174 2x75 Copper/treated aluminum quantity / configuration no. 1 1 1 1 pipes/fins mm 1.8 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 2 ront surface m ² 0.978 1.626 1.626 1.482 Dipipipies/fins<		ility (Frenham an	(Module)	•							
Quantity (Basic Fan Module, Fix speed) no. 1 1 1 1 1 FLA A 5 5 5 5 LRA A 0.1 0.1 0.1 0.1 COMPRESSOR no. 0.1 0.1 0.1 0.1 Quantity (Scroll Cooling System) no. - - - - FLA A 25 31 34 2x15 - LRA A 18 140 174 2x75 VAPORATING COIL - - - - - quantity / configuration no. 1 1 1 1 pipes/fins - - 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 ChILLED WATER COIL - - 1 1 1 1 guantity / configuration no. 1 1 1 1									0		
ELAA5555FAA0.10.10.10.1COMPRESSORQuantity (Scroll Cooling System)no.FLAA2531342x15FAA1181401742x75VAPORATING COILquantity / configurationno.1111cipes/finsmm1.81.81.81.81.8rowsno.5442+224ront surfacem²0.9781.6261.6261.482Cupantity / configurationpitch finsmo.1111rowsno.5442+21.6261.6261.482Cupantity / configurationno.1111quantity / configurationno.11111cipes/finsm²0.9781.6261.6261.482Cupantity / configurationno.1111cipes/finsno.1111111Copper/treated aluminum		ntity (Basic Fan Mo	odule Fix speed)						0		
LRA A 0.1 0.1 0.1 0.1 COMPRESSOR no. no. FLA A 25 31 34 2x15 LRA A 18 140 174 2x75 VAPORATING COIL quantity / configuration no. 1 1 1 1 pitch fins mm 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 Cupper/treated aluminum pitch fins no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 Cupper/treated aluminum no. 1 1 1 1 guantity / configuration no. 1 1 1 1 1											
COMPRESSOR Quantity (Scroll Cooling System) no. FLA A 25 31 34 2x15 LRA A 118 140 174 2x75 VAPORATING COIL 1 1 1 1 quantity / configuration no. 1 1 1 1 1 pipes/fins Toopper/treated aluminum Copper/treated aluminum 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL Toopper/treated aluminum Toopper/treated aluminum 1 1 1 1 pipes/fins m ² 0.978 1.626 1.626 1.482									0		
Quantity (Scroll Cooling System) no. FLA A 25 31 34 2x15 LRA A 118 140 174 2x75 VAPORATING COIL 1 1 1 1 1 quantity / configuration no. 1 1 1 1 1 pipes/fins mm 1.8 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 1.626 1.626 1.482 CHILLED WATER COIL m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL mo. 1 1 1 1 pipes/fins no. 1 1 1 1 1		PRESSOR									
FLA A 25 31 34 2x15 LRA A 118 140 174 2x75 EVAPORATING COIL quantity / configuration no. 1 1 1 1 pipes/fins 0.078 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL quantity / configuration no. 1 1 1 1 pipes/fins mo. 1 1 1 1											
LRA A 118 140 174 2x75 EVAPORATING COIL no. 1		ntity (Scroll Cooling	g System)								
EVAPORATING COIL no. 1 <th2< th=""> 1 1</th2<>									2x16		
quantity / configuration no. 1 1 1 1 1 pipes/fins mm 1.8 1.8 1.8 1.8 1.8 pitch fins mm 1.8 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL guantity / configuration no. 1 1 1 1 pipes/fins no. 1 1 1 1 1 1	LRA			A	118	140	174	2x75	2x10		
pipes/fins Copper/treated aluminum pitch fins mm 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 HILLED WATER COIL guantity / configuration no. 1 1 1 1 pipes/fins rows no. 1 1 1 1	VAP	ORATING COIL									
pipes/fins Copper/treated aluminum pitch fins mm 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL guantity / configuration no. 1 1 1 1 pipes/fins Copper/treated aluminum Copper/treated aluminum 1 1 1 1	quar	tity / configuration		no.	1	1	1	1			
pitch fins mm 1.8 1.8 1.8 1.8 rows no. 5 4 4 2+2 front surface m² 0.978 1.626 1.626 1.482 CHILLED WATER COIL quantity / configuration no. 1 1 1 1 pipes/fins Copper/treated aluminum											
no. 5 4 4 2+2 front surface m ² 0.978 1.626 1.626 1.482 CHILLED WATER COIL guantity / configuration no. 1 1 1 1 pipes/fins rows r				mm	1.8				1		
front surface m² 0.978 1.626 1.626 1.482 CHILLED WATER COIL quantity / configuration no. 1 1 1 1 pipes/fins Copper/treated aluminum	•								2+		
CHILLED WATER COIL quantity / configuration pipes/fins Copper/treated aluminum									1.4		
quantity / configuration no. 1 1 1 1 pipes/fins Copper/treated aluminum								=			
pipes/fins Copper/treated aluminum				20	4	4	4	4			
	•			10.	I						
ס.ר ס.ר ס.ר ווווו 1.0 1.0 1.0				mm	16				1		
rows no. 5 5 5 5	•								I		
rows no. 5 5 5 5 front surface m ² 0.978 1.626 1.626 1.482									1.48		

MODELS		PX041	PX047	PX051	PX044	PX054
REFRIGERANT CONNECTIONS (D models only)		Refrigerant	connecting p	ipe diameter	: see Tab. 12f	, Chap. 12
gas line outlet (pipe to be welded, o.d.)	mm	22	22	22	18/18	18/18
liquid line inlet (pipe to be welded, o.d.)	mm	18	18	18	18/18	18/18
WATER CIRCUIT CONDENSER (H models only)						
condenser type				Brazed plate		
water connections ISO 7/1	inch	Rp 1 ¼	Rp 1 1⁄4	Rp 1 ¼	Rp 1 ¼	Rp 1 ¼
Total water internal volume	I	4.14	4.14	4.14	5.12	5.8
CHILLED WATER CONTENT ISO 7/1	inch	Rp 1 ¼	Rp 1 ½	Rp 1 ½	Rp 1 ½	Rp 1 1/2
Total water internal volume	I	17.6	27.9	27.9	25.9	25.9
DIMENSIONS						
width	mm	1200	1750	1750	1750	1750
depth	mm	890	890	890	890	890
height	mm	1970	1970	1970	1970	1970
footprint	m ²	1.068	1.5575	1.5575	1.5575	1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) - Condensing temperature: 45°C - CW mode water temperature inlet/outlet 7/12 °C - Air flow of the units refers to the standard configuration with F5 class filter. (2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions,

different airflows can be provided by Emerson Network Power representatives.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection. ** Optional. Threaded union on request

MOD	ELS			PX062	PX068	PX082	PX094	PX104
Powe	r supply voltage		V/Ph/Hz		400\	/ ±10% / 3Ph /	50Hz	
	gerant circuit			double	double	double	double	double
	ORMANCE LEGA	CY (1)(2)	0.5			dition: 24°C, R		
air fl			m ³ /h	15900	18500	24000	25000	25000
	lene glycol		%	0	0	0	0	(
	igerant	IG PERFORMANCE (1)				R410A		
	gross cooling capa	acity	kW	59	63.3	81.5	88.8	99.4
	ible gross cooling	-	kW	57	63.2	81.1	86.3	91.5
	(sensible/total ratio		_	0.97	1	1	0.97	0.92
	pressor power inp		kW	6.33+6.32	6.33+6.33	8.27+8.26	9.33+9.3	11.25+11.23
com	pressor OA		А	12.17+12.17	12.17+12.17	15.14+15.13	17.45+17.41	22.23+22.20
	·	Net Sensible cooling capacity	kW	51.8	60.4	75.6	80.4	85.5
	Upflow	fan power input	A	2x2.45	3x1.19	3x2.22	3x2.47	3x2.48
		unit power input	kW	17.58	16.26	23.22	26.08	29.93
-		Net Sensible cooling capacity	kW	52.2	59.8	74.5	79.1	84.2
ē	Downflow Up	fan power input	A	2x2.39	3x1.15	3x2.22	3x2.41	3x2.41
Irat		unit power input	kW kW	17.46	16.14	23.22	25.89	29.74
Configuration	Downflow	Net Sensible cooling capacity	A	52.8 2x2.1	60.1 3x1.03	75.2 3x1.99	79.8 3x2.2	84.9 3x2.18
ē	Down	fan power input unit power input	kW	16.88	15.78	22.53	25.2	29.05
Ö		Net Sensible cooling capacity	kW	51.1				23.00
	Downflow	fan power input	A	2x2.33	_	_	_	_
	Frontal	unit power input	kW	17.34	_	_	_	_
Cond	lensing section (H	· · ·						
		-condensation temp: 45°C						
wate	r flow	-	l/s	0.695+0.672	0.724+0.681	0.946+0.903	1.044+1.001	1.189+1.158
wate	r side pressure dro	qq	kPa	10+9	5+4	8+8	10+9	12+12
CHIL	LED WATER PERF	FORMANCE (1)						
	gross cooling capa	-	kW	58.2	76.7	92.1	94.8	94.8
	ible gross cooling		kW	55.4	69	85.8	88.8	88.8
SHR	(sensible/total ration		-	0.95	0.9	0.93	0.94	0.94
		Net Sensible cooling capacity	kW	50.5	65.4	79.1	81.3	81.3
	Upflow	fan power input	A	2x2.45	3x1.19	3x2.22	3x2.47	3x2.48
		unit power input	kW	4.93	3.6	6.69	7.44	7.44
c	Dennefferer Um	Net Sensible cooling capacity	kW	50.6	65.5	79.1	81.5	81.5
ŝ	Downflow Up	fan power input unit power input	A kW	2x2.39 4.81	3x1.15 3.48	3x2.22 6.69	3x2.41 7.26	3x2.41 7.26
Configuration		Net Sensible cooling capacity	kW	51.2	65.9	79.8	82.2	82.2
fig	Downflow	fan power input	A	2x2.1	3x1.03	3x1.99	3x2.2	3x2.18
5	Down	unit power input	kW	4.23	3.12	6	6.57	6.57
0		Net Sensible cooling capacity	kW	50.7	-			
	Downflow	fan power input	А	2x2.33	-	-	-	-
	Frontal	unit power input	kW	4.69	-	-	-	-
mixt	ure flow		l/s	2.78	3.66	4.39	4.52	4.52
unit	total pressure drop)	kPa	68	54	75	79	79
FAN								
Qua	ntity (Premium Fan	Module)	no.	2	3	3	3	3
FLA	inty (i ronnain rain	incluic)	A	10	15	15	15	15
LRA			А	0.2	0.3	0.3	0.3	0.3
	ntity (Basic Fan Mo	dule, Fix speed)	no.	2	2	2	2	2
FLA			A	10	10	10	10	10
LRA			А	0.2	0.2	0.2	0.2	0.2
	PRESSOR							
	ntity (Scroll Cooling	n System)	no.					
FLA		g 0,00011/	A	2x21	2x21	2x25	2x31	2x34
LRA			A	2x111	2x111	2x118	2x140	2x34 2x174
	ORATING COIL					24110	24110	
	ntity / configuration		no.	1	1	1	inum 1	1
	s/fins			4.0		per/treated alum		4.0
pitch			mm	1.8 2+3	1.8	1.8	1.8 2+3	1.8
rows	surface		no. m ²	1.482	2+3 2.442	2+3 2.442	2+3	2.442
				1.402	2.442	2.442	2.442	2.442
	LED WATER COIL							
	ntity / configuration		no.	1	1	1	1	1
	s/fins					per/treated alum		
pitch			mm	1.6	1.6	1.6	1.6	1.6
rows			no.	5	5	5	5	5
	surface		m ²	1.482	2.442	2.442	2.442	2.442
		ECTIONS (D models only)		•	•	pipe diamete		· •
das	line outlet (pipe to		mm	18/18	18/18	18/18	18/18	18/18
•		be welded, o.d.)	mm	18/18	18/18	22/22	22/22	22/22

MODELS		PX062	PX068	PX082	PX094	PX104
WATER CIRCUIT CONDENSER (H models only)						
condenser type				Brazed plate		
water connections ISO 7/1	inch	Rp 1 ¼	Rp 1 ¼	Rp 1 1⁄4	Rp 1 ¼	Rp 1 ¼
Total water internal volume	I	6.46	8.68	8.68	8.68	8.68
CHILLED WATER CONTENT ISO 7/1	inch	Rp 1 ½		O. D. 54 m	m* R 2**	
Total water internal volume	L. L.	25.9	42.6	42.6	42.6	42.6
DIMENSIONS						
width	mm	1750	2550	2550	2550	2550
depth	mm	890	890	890	890	890
height	mm	1970	1970	1970	1970	1970
footprint	m ²	1.5575	2.2695	2.2695	2.2695	2.2695

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – CW mode water temperature inlet/outlet 7/12 °C – Air flow of the units refers to the standard configuration with F5 class filter.
 (2) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions,

different airflows can be provided by Emerson Network Power representatives.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

Tab. 4f – Digital Scroll Cooling System dualfluid direct expansion unit @ 100% cooling capacity, Premium Fan Module

PXxxx D/H series

MODE	-			PX041	PX047	PX051	PX044	PX054
	r supply voltage		V/Ph/Hz	aingle		±10% / 3Ph / 5		double
	erant circuit	CV (1)(2)		single	single	single lition: 24°C, R.	double	double
air flo		(CF (1)(3)	m ³ /h	10000	13200	15200	п. э0% 12500	15300
	ene glycol		%	0000	0	0	12500	0
		NG PERFORMANCE (1)	/0	v	0	0	0	0
	gerant					R410A		
	gross cooling cap	acity	kW	38	47	50.9	42.6	52.2
	ble gross cooling		kW	36.2	46.6	50.9	42.6	52.1
SHR	(sensible/total rati	0)	-	0.95	0.99	1	1	1
comp	pressor power inp	out	kW	8.47	10.65	11.22	4.76+4.55	5.69+5.53
comp	oressor OA		Α	15.59	14.93	21.83	8.38+8.15	11.01+10.81
		Net Sensible cooling capacity	kW	34.7	44.2	47	39.8	47.7
	Upflow	fan power input	A	2.47	2x1.35	2x1.91	2x1.37	2x2.25
		unit power input	kW	10.97	13.38	15.07	12.07	15.75
_		Net Sensible cooling capacity	kW	33.7	44	47.2	39.9	47.7
ē	Downflow Up	fan power input	A	2.47	2x1.3	2x1.85	2x1.33	2x2.19
rat		unit power input	kW	10.97	13.28	14.95	12	15.63
Configuration	Downflow	Net Sensible cooling capacity	kW	34	44.3	47.6	40.2	48.3
μĨ	Downflow	fan power input	A	2.22	2x1.13	2x1.64	2x1.16	2x1.91
ပိ	Down	unit power input	kW	10.72	12.94	14.53	11.66	15.07
-	Downflow	Net Sensible cooling capacity	kW	33.9	43.2	46.8	39.6	47.4
	Frontal	fan power input	Α	2.34	2x1.21	2x1.75	2x1.24	2x2.08
	Fiolitai	unit power input	kW	10.84	13.1	14.75	11.81	15.41
Cond	ensing section							
		-condensation temp: 45°C						
water			l/s	0.873	1104	1197	0.486+0.51	0.595+0.62
	r side pressure dro		kPa	10	16	18	10+10	11+12
	ED WATER PER							
	gross cooling cap		kW	37.6	53.9	59.5	49.2	56.7
	ble gross cooling		kW	35.3	48.8	54.9	45.3	53.7
SHR	(sensible/total rati			0.94	0.9	0.92	0.92	0.95
		Net Sensible cooling capacity	kW	32.9	46.1	51.1	42.6	49.1
	Upflow	fan power input	A	2.47	2x1.35	2x1.91	2x1.37	2x2.25
		unit power input	kW	2.5	2.73	3.85	2.77	4.53
c		Net Sensible cooling capacity	kW	32.9	46.2	51.2	42.6	49.3
Configuration	Downflow Up	fan power input	A	2.47	2x1.3	2x1.85	2x1.33	2x2.19
rat		unit power input	kW	2.5	2.63	3.73	2.69	4.41
igu	Downflow	Net Sensible cooling capacity	kW	33.1	46.5	51.6	43	49.8
Ţ	Down	fan power input	A	2.22	2x1.13	2x1.64	2x1.16	2x1.91
ő		unit power input	kW	2.25	2.29	3.31	2.35	3.85
	Downflow	Net Sensible cooling capacity	kW	33	46.4	51.4	42.8	49.5
	Frontal	fan power input	A	2.34	2x1.21	2x1.75	2x1.24	2x2.08
		unit power input	kW	2.37	2.45	3.53	2.51	4.19
	ire flow		l/s	1.79	2.57	2.84	2.35	2.7
	otal pressure drop		kPa	100	71	85	50	65
		RT (2)(3)	m ³ /h	10000	13200	lition: 35°C, R. 15200	н. 30% 12500	15300
air flo	. ,		%	10000 0		15200	12500	
		IG PERFORMANCE (2)	70	0	0	0	0	0
-	gerant	NG PERFORMANCE (2)				R410A		
	gross cooling cap	acity	kW	46.2	58.1	63.2	53.5	65.3
	ble gross cooling		kW	46.2	58.1	63.2	53.5	65.2
	(sensible/total rati		_	40.2	1	1	1	1
	pressor power inp		kW	8.52	10.71	11.13	4.84+4.56	5.64+5.47
	pressor OA		A	15.63	15.04	21.58	8.41+8.2	10.86+10.68
		Net Sensible cooling capacity	kW	44.3	55.4	59.3	50.6	60.6
	Upflow	fan power input	A	2.47	2x1.35	2x1.91	2x1.37	2x2.25
		unit power input	kW	11.03	13.45	14.98	12.16	15.64
		Net Sensible cooling capacity	kW	43.7	55.5	59.5	50.8	60.8
5	Downflow Up	fan power input	A	2.47	2x1.3	2x1.85	2x1.33	2x2.19
atik	2011.1011 OP	unit power input	kW	11.02	13.34	14.86	12.09	15.52
Configuration		Net Sensible cooling capacity	kW	44	55.8	59.9	51.1	61.4
fig	Downflow	fan power input	A	2.22	2x1.13	2x1.62	2x1.16	2x1.91
Б.	Down	unit power input	kW	10.77	13	14.4	11.75	14.96
o		Net Sensible cooling capacity	kW	43.9	54.8	58.6	50.3	60.1
	Downflow	fan power input	A	2.34	2x1.21	2x1.8	2x1.24	2x2.08
	Frontal		kW	10.89	13.15	14.77	11.9	15.31
		unit power input	KVV	10.09	13.13	14.77	11.9	10.31
								-

MODEL	_S			PX041	PX047	PX051	PX044	PX054
	nsing section							
	•	-condensation temp: 45°C						
water f			l/s	1043	1339	1457	0.587+0.64	0.716+0.77
	side pressure dro		kPa	14	23	27	14+16	15+17
	D WATER PERF		1.3.47	00.5	FF 4	01 7	54 5	00
	ross cooling capa		kW	39.5 20 F	55.4	61.7	51.5	60 60
	le gross cooling sensible/total ratio		kW	39.5 1	55.4 1	61.7 1	51.5 1	1
STIR (S		Net Sensible cooling capacity	kW	37	52.7	57.9	48.8	55.5
	Upflow	fan power input	A	2.47	2x1.35	2x1.91	2x1.37	2x2.25
	Ophow	unit power input	kW	2.5	2.73	3.85	2.77	4.53
-		Net Sensible cooling capacity	kW	37	52.8	58	48.8	55.6
E	Downflow Up	fan power input	A	2.47	2x1.3	2x1.85	2x1.33	2x2.19
tio	Downlow op	unit power input	kW	2.5	2.63	3.73	2.69	4.41
Configuration		Net Sensible cooling capacity	kW	37.3	53.2	58.4	49.2	56.2
fig	Downflow	fan power input	A	2.22	2x1.13	2x1.64	2x1.16	2x1.91
ō	Down	unit power input	kW	2.25	2.29	3.31	2.35	3.85
<u>о</u> _		Net Sensible cooling capacity	kW	37.1	53	58.1	49	55.8
	Downflow	fan power input	A	2.34	2x1.21	2x1.8	2x1.24	2x2.08
	Frontal	unit power input	kW	2.37	2.45	3.63	2.51	4.19
mixture	e flow		l/s	1.58	2.21	2.46	2.05	2.39
	al pressure drop		kPa	76	52	63	38	50
FAN								
					-			
	ty (Premium Fan	Module)	no.	1	2	2	2	2
FLA			A	5	10	10	10	10
LRA	ty (Paoio Ean Mo	dula Fix anad)	A	0.1 1	0.2 1	0.2 1	0.2 1	0.2
FLA	Jantity (Basic Fan Module, Fix speed)		no. A	5	5	5	5	1 5
LRA			A	0.1	0.1	0.1	0.1	0.1
	RESSOR			0.1	0.1	0.1	0.1	0.1
		On allian Orientaria)			•	0	0	
FLA	ty (Digital Scroll	Cooling System)	no.	1 25	2 16.5+15	2	2	2 2x16.2
LRA			A A	118	2x101	2x16.2 2x101	2x15 2x75	2x10.2 2x101
	RATING COIL			110	22101	20101	2015	20101
-								
	ty / configuration		no.	1	1	1	1	1
pipes/f				1.0		er/treated alumi		1.0
pitch fi	ns		mm	1.8	1.8	1.8	1.8	1.8
rows	urfana		no. m ²	5 0.978	4 1.626	4 1.626	2+2 1.482	2+2
front su			-m-	0.978	1.020	1.020	1.482	1.482
	D WATER COIL							
	ty / configuration		no.	1	1	1	1	1
pipes/f						er/treated alumi		
pitch fi	ns		mm	1.6	1.6	1.6	1.6	1.6
rows			no.	5	5	5	5	5
front su			m ²	0.978	1.626	1.626	1.482	1.482
		ECTIONS (D models only)		•	• •	pipe diameter		· •
	e outlet (pipe to l		mm	22	22	22	18/18	18/18
	ine inlet (pipe to	DENSER (H modele entri)	mm	18	18	18	18/18	18/18
	nser type	DENSER (H models only)				Brazed plate		
	connections ISO	7/1	inch	Rp 1 1/4	Rp 1 1/4	Rp 1 1/4	Rp 1 1/4	Rp 1 ¼
	ater internal volu			4.14	4.14	np i ⁄₄ 4.14	5.12	np i % 5.8
	D WATER CON		inch	Rp 1 1/4	Rp 1 ½	Rp 1 ½	Rp 1 ½	Rp 1 ½
				17.6	27.9	27.9	25.9	25.9
	Total water internal volume			17.0	27.3	21.5	20.0	20.0
	0.010			1000	1750	1750	1750	1750
width			mm	1200	1750	1750	1750	1750
depth			mm	890	890 1070	890	890	890
height footprir	nt		mm m ²	1970 1.068	1970 1.5575	1970 1.5575	1970 1.5575	1970 1.5575

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – CW mode water temperature inlet/outlet 7/12 °C – Air flow of the units refers to the standard configuration with F5 class filter.
 (2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature:

(2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature: 45°C – CW mode water temperature inlet/outlet 12/18 °C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow. Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

MODE				PX062	PX068	PX082	PX094	PX104
	supply voltage		V/Ph/Hz			±10% / 3Ph /		
-	erant circuit			double	double	double	double	double
air flov		CY (1)(3)	m ³ /h	15900	Air Con 18500	dition: 24°C, R 24000	. H. 50% 25000	2500
	w ene glycol		%	15900	0	24000	25000	2500
	0,	IG PERFORMANCE (1)	70	0	0	0	0	
	gerant					R410A		
total g	gross cooling capa	acity	kW	58.7	63	81.9	92	97
	ole gross cooling		kW	56.8	63	81.3	87.9	90
,	sensible/total ratio	·	_	0.97	1	0.99	0.96	9.0
	ressor power inp	ut	kW	6.42+6.33	6.45+6.33	9.29+9.31	10.64+10.65	11.22+11.2
comp	ressor OA	Net Sensible cooling capacity	A kW	12.62+12.17 51.6	12.66+12.17 60	16.5+16.52 76	14.9+14.93 81.8	21.85+21.8
	Upflow	fan power input	A	2x2.45	3x1.19	3x2.22	3x2.47	3x2.4
	opnow	unit power input	kW	17.67	16.38	25.3	28.74	29.8
		Net Sensible cooling capacity	kW	52	59.5	74.7	80.7	83
Configuration	Downflow Up	fan power input	А	2x2.39	3x1.15	3x2.22	3x2.41	3x2.4
rati	-	unit power input	kW	17.56	16.26	25.29	28.55	29
nb	Downflow	Net Sensible cooling capacity	kW	52.6	59.9	75.4	81.3	83
	Down	fan power input	A	2x2.10	3x1.03	3x1.99	3x2.2	2x2.1
ວິ		unit power input	kW	16.98	15.9	24.6	27.92	29.0
	Downflow	Net Sensible cooling capacity	kW	51 2x2.33	-	-	_	
	Frontal	fan power input unit power input	A kW	17.43		_	_	
onde	ensing section		r. ¥ ¥	17.43	-	_		
	-	-condensation temp: 45°C						
water			l/s	0.667+0.7	0.677+0.72	0.929+0.97	1.061+1.10	1.132+1.1
water	side pressure dro	qq	kPa	10+11	6+8	11+13	15+16	16+1
HILL	ED WATER PERF	FORMANCE (1)						
total g	gross cooling capa	acity	kW	58.2	76.7	92.1	94.8	94
sensit	ole gross cooling	capacity	kW	55.4	69	85.8	88.8	88
SHR ((sensible/total ratio		-	0.95	0.9	0.93	0.94	0.9
		Net Sensible cooling capacity	kW	50.5	65.4	79.1	81.3	81
	Upflow	fan power input	A	2x2.45	3x1.19	3x2.22	3x2.47	3x2.4
		unit power input	kW	4.93	3.6	6.69	7.44	7.4
ç	Downflow Up	Net Sensible cooling capacity fan power input	kW A	50.6 2x2.39	65.5 3x1.15	79.1 3x2.22	81.5 3x2.41	81 3x2.4
Ĕ	Dowiniow op	unit power input	kW	4.81	3.48	6.69	7.26	7.2
Configuration		Net Sensible cooling capacity	kW	51.2	65.9	79.8	82.2	82
lig	Downflow	fan power input	A	2x2.10	3x1.03	3x1.99	3x2.18	3x2.1
<u>S</u>	Down	unit power input	kW	4.23	3.12	6	6.57	6.5
0	Downflow	Net Sensible cooling capacity	kW	50.7	-	-	-	
	Frontal	fan power input	A	2x2.33	-	-	-	
		unit power input	kW	4.69				
	re flow		l/s	2.78	3.66	4.39	4.52	4.5
	otal pressure drop		kPa	68	54	75	79	7
air flo		11 (2)(3)	m ³ /h	15900	18500	dition: 35°C, R 24000	. п. 30% 25000	2500
	ene glycol		%	15900	0	24000	25000	2000
		IG PERFORMANCE (2)	/0	0	0	0	0	
	gerant					R410A		
-	gross cooling capa	acity	kW	72.4	79	101.9	113.5	118
	ole gross cooling	-	kW	72.4	79	101.9	113.4	118
SHR (sensible/total ratio	0)	-	1	1	1	1	
comp	ressor power inp	ut	kW	6.54+6.33	6.62+6.33	9.38+9.42	10.69+10.71	11.19+11.1
comp	ressor OA		A	12.79+12.17	12.92+12.17	16.58+16.6	15.01+15.05	21.75+21.6
		Net Sensible cooling	kW	67.3	76.2	96.5	107.6	112
	Upflow	capacity		0.0.4-	0.110	0.000	0.04-	
		fan power input	A kW	2x2.45	3x1.19	3x2.22	3x2.47	3x2.4
		unit power input Net Sensible cooling		17.77 67.7	16.55 75.5	25.49 95.4	28.84 106.2	29.7
		capacity	kW	07.7	75.5	55.4	100.2	111
5	Downflow Up	fan power input	A	2x2.39	3x1.15	3x2.16	3x2.41	3x2.4
rati		unit power input	kW	17.68	16.43	25.31	28.66	29.5
=		Net Sensible cooling	kW	68.2	75.9	95.9	106.9	11
5	Downflow	capacity		• • • •	0	0.105	0.0.1-	~ ~ ~
nfigu	Down	fan power input	A	2x2.10	3x1.03	3x1.99	3x2.18	3x2.1
Configu	Down	unit power input	kW	17.1	16.07	24.8	27.97	28
Configu		Not Sonsible cooling	kW	66.5	-	-	_	
Configu		Net Sensible cooling capacity	KVV					
Configu	Downflow	capacity		2x2 33	_	-	_	
Configu			A kW	2x2.33 17.54		-	-	
	Downflow	capacity fan power input unit power input	А					
	Downflow Frontal ensing section (H	capacity fan power input unit power input	А					
Conde	Downflow Frontal ensing section (H inlet temp: 30°C-	capacity fan power input unit power input I models only)	А			- - 1.110+1.21	 1.251+1.37	1.312+1.4

MOD	ELS			PX062	PX068	PX082	PX094	PX104
CHILI	LED WATER PER	FORMANCE (2)						
total	gross cooling cap	acity	kW	61.8	78.8	96	99	99
sensi	ible gross cooling	capacity	kW	61.8	78.8	96	99	99
SHR	(sensible/total rat		-	1	1	1	1	1
		Net Sensible cooling capacity	kW	56.8	75.2	89.4	91.6	91.6
	Upflow	fan power input	A	2x2.45	3x1.19	3x2.22	3x2.47	2.47
		unit power input	kW	4.93	3.6	6.69	7.44	7.44
~		Net Sensible cooling capacity	kW	57	75.3	89.6	91.8	91.8
Configuration	Downflow Up	fan power input	A	2x2.39	3x1.15	3x2.16	3x2.41	2x2.41
Irat		unit power input	kW	4.81	3.48	6.51	7.26	7.26
iğı	Downflow	Net Sensible cooling capacity	kW	57.9	75.7	90.1	92.5	92.5
Ju	Down	fan power input	A	2x2.10	3x1.03	3x1.99	3x2.18	3x2.18
ŭ		unit power input	kW kW	4.23	3.12	6	6.57	6.57
	Downflow	Net Sensible cooling capacity	A	2x2.33	_	_	_	_
	Frontal	fan power input	kW	4.69	_	_	-	_
miytı	ire flow	unit power input	l/s	2.46	3.14	3.83	3.95	3.95
			kPa	53	3.14	56	5.95 60	5.95 60
	otal pressure drop)	кга			50	00	00
FAN								
	ntity (Premium Far	n Module)	no.	2	3	3	3	3
FLA			A	10	15	15	15	15
LRA			A	0.2	0.3	0.3	0.3	0.3
	ntity (Basic Fan Mo	odule, Fix speed)	no.	2	2	2	2	2
FLA			A	10	10	10	10	10
LRA			A	0.2	0.2	0.2	0.2	0.2
сом	PRESSOR							
Quar	ntity (Digital Scroll	Cooling System)	no.	2	2	4	4	4
FLA			А	2x21	2x21	4x15	2x(16.5+15)	4x16.2
LRA			А	2x111	2x111	4x75	4x101	4x101
EVAP	ORATING COIL							
quan	tity / configuratior	1	no.	1	1	1	1	1
pipes					Coppe	er/treated alum	inum	
pitch	fins		mm	1.8	1.8	1.8	1.8	1.8
rows			no.	2+2	2+2	2+2	2+2	2+2
front	surface		m ²	1.482	2.442	2.442	2.442	2.442
CHILI	LED WATER COIL	_						
	tity / configuration		no.	1	1	1	1	1
pipes		1	110.	1		er/treated alum		
pitch			mm	1.6	1.6	1.6	1.6	1.6
rows			no.	5	5	5	5	5
	surface		m ²	1.482	2.442	2.442	2.442	2.442
		ECTIONS (D models only)					r: see Tab. 12f	
	ine outlet (pipe to		mm	18/18	18/18	22/22	22/22	22/22
•	l line inlet (pipe to		mm	18/18	18/18	18/18	18/18	18/18
		DENSER (H models only)		10,10	10,10	10,10	10,10	10,10
	lenser type	DENOET (IT models only)				Brazed plate		
	r connections ISO	7/1	inch	Rp 1 1⁄4	Rp 1 ¼	Rp 1 1/4	Rp 1 1⁄4	Rp 1 ¼
	water internal vol		I	6.46	8.68	8.68	8.68	8.68
	LED WATER CON		inch	Rp 1 ½	0.00	O. D. 54 m		0.00
	water internal vol		I	25.9	42.6	42.6	42.6	42.6
	NSIONS							
width			mm	1750	2550	2550	2550	2550
			mm	1750	2550	2550	2550	
dept			mm	890	890	890	890	890
heigh			mm m ²	1970 1.5575	1970 2.2695	1970 2.2695	1970 2.2695	1970 2.2695
footp								

Data refers to Standard Units without options, Premium Fan Module with clean F5 filters.

Standard ESP: Upflow 50Pa; Downflow Up 20Pa; Downflow Down 20 Pa Downflow Frontal 0Pa

For Downflow Up and Down versions the data refers to the height of the raised floor = 600mm

Performance data refers to Downflow Units, if not specified otherwise.

(1) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 24°C bs; 50% R.H. (17°C wb) – Condensing temperature: 45°C – CW mode water temperature inlet/outlet 7/12 °C – Air flow of the units refers to the standard configuration with F5 class filter.
 (2) IN THE FOLLOWING STANDARD CONDITIONS: Room conditions 35°C bs; 30% R.H. (21.4°C wb) – Condensing temperature:

45°C – CW mode water temperature inlet/outlet 12/18 °C – Air flow of the units refers to the standard configuration with F5 class filter.

(3) Liebert PDX is able to adapt to the different site needs and working conditions. Performances in different working conditions, different airflows can be provided by Emerson Network Power representatives.

(4) The Airflow indicated in the Smart Performance is the unit nominal airflow.

Technical data can be subject to change without notice.

* VICTAULIC[®] Connection.

** Optional. Threaded union on request

Coupling of room units with remote air—cooled condensers

The units should be connected to Liebert HCR or Liebert[®] MC[™] Microchannel Coil Condenser.

The following paragraphs describe the suggested coupling of **Liebert**[®] **PDX** units. The data given below are approximate and must always be verified on the basis of the other specific operating conditions.

Liebert® PDX units, Dual Circuit Scroll Cooling System, can be connected to Liebert HCR (single circuit), Liebert® HBR (dual circuit) or Liebert® MC[™] Microchannel Coil Condenser single or dual circuit. Liebert® PDX units, Dual Circuit Digital Scroll Cooling System, can be connected to Liebert HCR (single circuit) or Liebert® MC[™] Microchannel Coil Condenser single or dual circuit.

To ensure correct operation, best performance, and longest life the units must be connected to remote condensers approved by Emerson Network Power.

The warranty clauses are no longer valid if the unit is connected to an unapproved remote condenser.

Connecting a too large capacity condenser (50% higher than the nominal capacity indicated in Tab.5.a) to the PDX unit can cause malfunctioning and incorrect condenser regulation at low ambient temperature (e.g. in cold season).

All HCR condensers (refrigerant R410A) with Variex have the possibility to change the condenser set point from default set point 1 (condensing temperature 39°C) to set point 2 (condensing temperature 34°C). This set point 2 increases the system efficiency despite of a little increase of the external unit noise. For more details see the HCR manuals.

Note: This option is possible only when indoor units have the EEV (electronic expansion valve).

Tab. 5a – Coupling of Liebert HCR Condensers with Liebert® PDX A–D

MODEL	External temperature up to 35°C	External temperature up to 40°C	External temperature up to 46°C	External temperature up to 48°C
PX041xA/D	1 x HCR51	1 x HCR59	1 x HCR76	1 x HCR88
PX045xA	1 x HCR59	1 x HCR59	1 x HCR76	1 x HCR88
PX047xA/D	1 x HCR59	1 x HCR59	1 x HCR76	1 x HCR88
PX051xA/D	1 x HCR59	1 x HCR76	1 x HCR88	1 x HCR99
PX057xA	1 x HCR76	1 x HCR88	1 x HCR88	1 x HCR99
PX044xA/D	2 x HCR33	2 x HCR33	2 x HCR43	2 x HCR51
PX054xA/D	1 x HCR33	2 x HCR43	2 x HCR43	2 x HCR59
PX062xA/D	2 x HCR43	2 x HCR43	2 x HCR59	2 x HCR76
PX074xA	2 x HCR43	2 x HCR59	2 x HCR76	1 x HCR88
PX068xA/D	2 x HCR43	2 x HCR43	2 x HCR59	2 x HCR76
PX082xA/D	2 x HCR51	2 x HCR59	2 x HCR76	1 x HCR88
PX094xA/D	2 x HCR59	2 x HCR76	2 x HCR88	2 x HCR99
PX104xA/D	2 x HCR59	2 x HCR76	2 x HCR88	2 x HCR99
PX120xA	2 x HCR76	2 x HCR88	2 x HCR99	2 x HCR99
PX059xA	2 x HCR76	1 x HCR88	1 x HCR88	1 x HCR99
PX092xA	2 x HCR59	2 x HCR76	1 x HCR88	2 x HCR99

Tab. 5b – Coupling of Liebert® MC Condensers with Liebert® PDX A–D

MODEL	External temperature up to 35°C	External temperature up to 40°C	External temperature up to 46°C
PX041xA/D	1 x MCL055	1 x MCL055	1 x MCM080
PX045xA	1 x MCL055	1 x MCM080	1 x MCM080
PX047xA/D	1 x MCL055	1 x MCM080	1 x MCM080
PX051xA/D	1 x MCM080	1 x MCM080	1 x MCL110
PX057xA	1 x MCM080	1 x MCM080	1 x MCL110
PX044xA/D	2 x MCS028	2 x MCM040	2 x MCM040
PX054xA/D	2 x MCM040	2 x MCM040	2 x MCL055
PX062xA/D	2 x MCM040	2 x MCL055	2 x MCL055
PX074xA	2 x MCL055	2 x MCL055	2 x MCM080
PX068xA/D	2 x MCM040	2 x MCL055	2 x MCL055
PX082xA/D	2 x MCL055	2 x MCL055	2 x MCM080
PX094xA/D	2 x MCL055	2 x MCM080	2 x MCM080
PX104xA/D	2 x MCM080	2 x MCM080	2 x MCL110
PX120xA	2 x MCM080	2 x MCL110	2 x MCL110
PX059xA	1 x MCM080	1 x MCM080	2 x MCL110
PX092xA	2 x MCL055	2 x MCM080	2 x MCM080

Heat Rejections (A – D versions)

Model	Power supply	Total Heat Rejection (THR)*	Air Volume	Noise Level **	Input Power	Current Absorp-	FLA	conne	gerant ections nm]	Unit with p	backing
Woder	[V/Ph/Hz]	R410A [kW]	R410A [m ³ /h]	[dB(Å)] @ [kW] 5 m		[kW] tion [A]		Gas line [mm]	Liquid line [mm]	Dimen- sions [mm]	Weight ^[kg]
HCR 24	230/1/50	24,0	8.600	51,0	0,55	2,5	2,5	16	16	L 1112 W 1340 H 907	60
HCR 33	230/1/50	32,2	7.400	51,0	0,55	2,5	2,5	16	16	L 1112 W 1340 H 907	75
HCR 43	230/1/50	46,0	17.000	54,0	1,10	5,0	5,0	16	16	L 1112 W 2340 H 907	92
HCR 51	230/1/50	52,0	17.000	54,0	1,10	5,0	5,0	22	16	L 1112 W 2340 H 907	93
HCR 59	230/1/50	62,0	15.600	54,0	1,10	5,0	5,0	22	16	L 1112 W 2340 H 907	102
HCR 76	230/1/50	78,0	25.500	56,0	1,65	7,5	7,5	22	16	L 1112 W 3340 H 907	136
HCR 88	230/1/50	92,0	23.400	56,0	1,65	7,5	7,5	22	16	L 1112 W 3340 H 907	165
HCR 99	230/1/50	130,0	32.000	57,0	2,20	10,0	10,0	28	22	L 1112 W 4338 H 907	220

Tab. 5c - Technical data and performance of Liebert HCR condenser

Tab. 5d - Technical data and performance of Liebert® MC Condenser

Model	Power		Air Volume	Noise Level **	Input Power	Current Absorp-	FLA	Refrigerant connections [mm]		Unit with packing	
woder	supply [V/Ph/Hz]	R410A [kW]	[m ³ /h]	[dB(A)] @ 5 m			[A]	Gas line [mm]	Liquid line [mm]	Dimen- sions [mm]	Weight [kg]
MCS028	230/1/50	32.96	8831	49.8	0.473	0.99	4.3	22	16	L 1400 W 1100 H 1000	70
MCM040	400/3/50	41.97	11264	54	0.636	1.23	1.5	22	16	L 1453 W 1175 H 1007	105
MCL055	400/3/50	59.55	15451	62	0.92	1.72	3.5	28	22	L 1730 W 1420 H 1100	156
MCM080	400/3/50	83.94	22528	57	1.272	2.46	3	28	22	L 2674 W 1175 H 1007	200
MCL110	400/3/50	112	30902	65	2.11	3.96	7	35	28	L 3160 W 1420 H 1100	273

(*) The nominal capacities refer to the following operative conditions:

• refrigerant as indicated (R410A).

• temperature differences: 15 K (T condensation - T outdoor).

• height of the installation = 0 m, above the sea level. For different altitudes, see Hirating program.

• clean exchange surfaces.

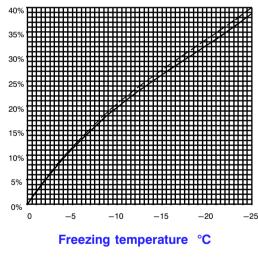
(**) The levels of sound pressure here included are measured in the same operative conditions, and are referred to 5 m far from the unit, at 1.5 m in height in free field conditions.

Coupling of water cooled units with remote Dry Coolers

The water–condensed units are provided with a water/refrigerant exchanger with braze–welded **plates** made of **stainless steel**; this advanced exchanger type gives the highest efficiency in heat exchange. In addition, a certain oversizing of the exchanger has been provided so as to reduce pressure drops (and energy consumption of the water pump) as much as possible and thus to allow the unit to operate with the external chiller in closed circuit, even at high outdoor temperatures.

The units type W/H are designed for operating with mains water or water in closed circuit with an external chiller. The units type F are

designed for operating with water in closed circuit with a remote Dry Cooler (or other suitable external device).


When operating in a closed circuit, the water is cooled by the outdoor air in a heat exchanger; in this case, to avoid unwanted ice formation during winter, it is advisable to use a water/glycol mixture.

The circulation of the water—glycol mixture is forced (the pump is not supplied). If mains water or tower water is used, when installing the unit fit a mechanical filter on the water line to protect the condenser against possible impurities contained in the water (for condenser cleaning see the User Manual).

Dry Coolers

Our Dry Coolers are built with a copper/aluminium cooling coil and axial fan(s). The main data on Dry Coolers is shown in the following table:

Percentage of ethylene glycol mixed with water

Note:

In the closed circuits to avoid water freezing in the cold seasons, it is strictly recommended to mix water with ethylene glycol. The suggested percentage is given in the Diagram. For safety reason, calculate the percentage at least at 5°C below the minimum ambient temperature.

It is also recommended to check periodically the mixture: in case of leackage of the circuit, the sanitary water, used at compensation, reduces progressively the glycol percentage and increases the freezing point of the mixture!

Features and benefits

Liebert HPD Dry Coolers are the new range of liquid coolers, able to cover rated heat exchange capacities from 8 to 400 kW.

% in volume

They excel above all for their efficiency, versatility and reliability, thanks to the following features:

- possibility of installation with horizontal or vertical air flow with simple operations on site, with the same model of Dry Cooler, without needing any wiring or re—wiring inside the unit.
- modulating fan speed regulator with phase (optional), for a continuous modulation of the fan speed, installed on the machine, wired and factory-set, thus making the connection steps on site and the unit start-up extremely easy; the fan speed regulator with phase cutoff can be selected to control up to two set-point values for the water delivery temperature of the Dry Cooler. Do not use fan speed regulator other than the approved one supplied by the manufacturer. When the Dry Cooler is ordered without temperature control, an outer on/off type control (to be arranged by the customer) is anyway allowed and must be connected on site with the suitable terminals available in the electric board Q of the unit (see wiring diagram enclosed to the unit).

Heat Rejections (W – F – H versions)

- The axial fans are equipped with protection grid and are statically and dynamically balanced; they can guarantee high efficiency and a low emitted noise level (above all in the low noise version); further, they are equipped with motors able to operate within a wide range of outdoor working temperatures. Protection degree IP 54. Single-phase fans feature an electric condenser incorporated in the terminal board.
- Heat exchanger with oval—geometry tubes ensuring the best air flow and thus an increase in the
 efficiency of the heat exchange, for a lower emitted noise level.
 Tubes are in copper and fins in aluminum, with wide heat exchange surface.
 Upon request (optional), the unit can be ordered with fins in epoxy—coated aluminum, with a
 better protection. The coil manifolds are in copper, with flanged connections in AISI 304 stainless
 steel for the models with three—phase power supply and male gas threaded connections for the
 single—phase models.
- · the power supply is:

 $230\,\text{V}$ single phase 50 Hz in the ESM models (standard noise level) and ELM models (low noise level).

400 V three-phase 50 Hz in the EST models (standard noise level) and ELT models (low noise level).

- · Electrical boxes and accessories are water proof IP55.
- The frame is made up of a sturdy structure in galvanized steel, totally painted.
- The units are equipped with protection electric board Q, with main disconnector and safety device for fan motors.
- The most important technical data are gathered in Tab. 5f.

Tests on thermal performance have been carried out at IMQ laboratories, according to the norm UNI EN 1048:2000, at the following special operating conditions:

Air inlet T $= 35^{\circ}C$

Water inlet T = $45^{\circ}C$

Water outlet T = 40° C

Sound pressure levels have been evaluated according to the norm EN13487, at a 10-m distance, with free field.

 The working pressure depends on the circuit where the Dry Cooler is connected. Dry Cooler max working pressure = 16 bar.

All Dry Coolers are CE marking.

Dry Cooler units are conform to the following directives:

- 2006/42/EC;
- 2004/108/EC;
- 2006/95/EC;
- 97/23/EC.

Tab. 5e - Coupling of Dry Coolers

Madal	External tempera	ture up to 30°C	External tempera	ture up to 35°C	External tempera	ture up to 40°C
Model	Standard	Low noise	Standard	Low noise	Standard	Low noise
PX041xW/F/H	1 x EST028	1 x ELM027	1 x EST040	1 x ELT040	1 x EST060	1 x ELT055
PX045xW	1 x EST028	1 x ELM027	1 x EST040	1 x ELT040	1 x EST060	1 x ELT065
PX047xW/F/H	1 x EST028	1 x ELM027	1 x EST040	1 x ELT047	1 x EST060	1 x ELT065
PX051xW/F/H	1 x EST040	1 x ELT040	1 x EST050	1 x ELT047	1 x EST080	1 x ELT085
PX057xW	1 x EST040	1 x ELT040	1 x EST060	1 x ELT055	1 x EST080	1 x ELT085
PX044xW/F/H	1 x EST028	1 x ELM027	1 x EST040	1 x ELT040	1 x EST060	1 x ELT065
PX054xW/F/H	1 x EST040	1 x ELT040	1 x EST050	1 x ELT047	1 x EST080	1 x ELT085
PX062xW/F/H	1 x EST050	1 x ELT047	1 x EST060	1 x ELT055	1 x EST080	1 x ELT085
PX074xW	1 x EST050	1 x ELT047	1 x EST060	1 x ELT065	1 x EST125	1 x ELT130
PX068xW/F/H	1 x EST050	1 x ELT047	1 x EST060	1 x ELT055	1 x EST080	1 x ELT100
PX082xW/F/H	1 x EST060	1 x ELT055	1 x EST070	1 x ELT065	1 x EST125	1 x ELT130
PX094xW/F/H	1 x EST060	1 x ELT055	1 x EST080	1 x ELT085	1 x EST125	1 x ELT130
PX104xW/F/H	1 x EST070	1 x ELT065	1 x EST080	1 x ELT100	1 x EST175	1 x ELT160
PX120xW	1 x EST080	1 x ELT085	1 x EST125	1 x ELT100	1 x EST220	1 x ELT210
PX059xW	1 x EST040	1 x ELT040	1 x EST050	1 x ELT055	1 x EST080	1 x ELT085
PX092xW	1 x EST060	1 x ELT065	1 x EST080	1 x ELT085	1 x EST125	1 x ELT130

The table shows the recommended combinations of the Dry Coolers Liebert HPD with the air conditioners Liebert® PDX, according to the external air temperature. The combinations have been evaluated considering a mixture of water and ethylene glycol up to 30% as thermal exchange fluid.

The above indications are approximate and must be checked on the basis of other specific operating conditions.

For operating conditions other than those indicated in the table, refer to the New Hirating calculation software and to the Dry Coolers User Manual.

Heat Rejections (W – F – H versions)

Tab. 5f - Technical data and performance of Dry Coolers

		Performances	6		Electric data		Overall dimensions			
Standard Model	Duty (a)	Air flow	Noise level (c)	Supply	Number of fans	Total absorbed power	Width	Depth	Height (b)	
	kW	m ³ /h	db(A)	V/ph/Hz	n°	kW	mm	mm	mm	
ESM009	10.8	7100	46	230/1/50	1	0.78	1336	820	1030	
ESM013	12.8	6700	46	230/1/50	1	0.78	1336	820	1030	
ESM018	16.1	15000	49	230/1/50	2	1.56	2236	820	1030	
ESM022	22.0	14200	49	230/1/50	2	1.56	2236	820	1030	
EST028	28.0	20000	49	400/3/50	2	1.38	2866	1250	1070	
EST040	36.4	19400	49	400/3/50	2	1.38	2866	1250	1070	
EST050	46.1	18400	49	400/3/50	2	1.38	2866	1250	1070	
EST060	62.8	28200	51	400/3/50	3	2.07	4066	1250	1070	
EST070	69.5	27600	51	400/3/50	3	2.07	4066	1250	1070	
EST080	84.8	37600	52	400/3/50	4	2.76	5266	1250	1070	
EST125	128.9	63000	50	400/3/50	3	6.00	5276	1620	1650	
EST175	168.1	84000	51	400/3/50	4	8.00	6826	1620	1650	
EST220	217.6	118800	53	400/3/50	6	12.00	5576	2340	1650	
EST270	265.4	109200	53	400/3/50	6	12.00	5576	2340	1650	
EST330	327.2	151600	54	400/3/50	8	16.00	7226	2340	1650	
EST400	414.1	189500	54	400/3/50	10	20.00	8876	2340	1650	

		Performance	s		Electric data		Overall dimensions			
Low Noise Model	Duty (a)	Air flow	Noise level (c)	Supply	Number of fans	Total absorbed power	Width	Depth	Height (b)	
	kW	m ³ /h	db(A)	V/ph/Hz	n ^o	kW	mm	mm	mm	
ELM008	6.8	5200	40	230/1/50	1	0.29	1336	820	1030	
ELM011	10.3	4700	40	230/1/50	1	0.29	1336	820	1030	
ELM015	13.9	10400	43	230/1/50	2	0.58	2236	820	1030	
ELM018	17.9	9800	43	230/1/50	2	0.58	2236	820	1030	
ELM027	27.0	14700	44	230/1/50	3	0.87	3136	820	1030	
ELT040	36.9	15400	43	400/3/50	2	0.96	2866	1250	1070	
ELT047	44.5	21000	44	400/3/50	3	0.99	4066	1250	1070	
ELT055	55.7	23100	45	400/3/50	3	1.44	4066	1250	1070	
ELT065	65.6	32000	46	400/3/50	4	1.92	5266	1250	1070	
ELT085	80.8	28800	46	400/3/50	4	1.92	5266	1250	1070	
ELT100	96.7	40800	41	400/3/50	3	2.49	5276	1620	1650	
ELT130	128.7	62800	44	400/3/50	4	4.92	3926	2340	1650	
ELT160	158.2	65200	44	400/3/50	4	4.92	6826	1620	1650	
ELT210	212.3	89100	46	400/3/50	6	7.38	5576	2340	1650	
ELT270	277.5	118800	47	400/3/50	8	9.84	7226	2340	1650	
ELT350	351.0	148500	47	400/3/50	10	12.30	8876	2340	1650	

(a): at the following operative conditions: outdoor temperature = 35°C, inlet/outlet water temperature = 45°C/40°C, fluid is pure water, slm zero meters. For different conditions refer to NewHirating program and to the Dry Coolers User Manual.
(b): vertical flow installation.
(c): sound pressure level, free field, at 10 m distance, according to EN13487.

Useful available heads

The tables give the available and allowed external static pressure against airflow at different EC Fan modulation. All units are considered in standard configuration with clean F5 air filters. The Liebert® PDX units are supplied with electric fans sized for 20 Pa **Available External Static Pressure** (ESP) for the models **Downflow Up** and **Down**, 50 Pa for the models **Upflow** and 0 Pa for **Downflow Frontal**.

The nominal airflow of all units can be changed via iCOM control.

Note: The EC Fan modulation could slightly differ from the EC Fan voltage signal.

Tab. 6a —	PXxxx A/W	series,	basic	fan	module
-----------	-----------	---------	-------	-----	--------

MODE	ELS		PX041	PX045	PX047	PX051	PX057	PX044	PX054	PX062
Power	r supply voltage	V/Ph/Hz				400 ±109	% / 3 / 50			
	Nominal air flow	m ³ /h	10000	10500	12200	12200	16300	11900	12400	16300
	ESP @ nominal airflow	Pa	50	50	50	50	50	50	50	50
<u>≷</u>	EC fan modulation	%	91	95	91	91	89	91	96	93
Upflow	Max ESP available@ nominal airflow	Ра	197	135	187	187	226	181	115	155
	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11140	11140	13212	13212	18787	12867	12867	17682
_	Nominal air flow	m ³ /h	10000	10500	12200	12200	16301	11900	12400	16300
h	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
ð	EC fan modulation	%	91	95	90	90	89	90	95	93
uff	Max ESP available@ nominal airflow	Pa	166	102	170	170	196	167	100	127
Downflow	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11092	11092	13290	13290	18668	12958	12958	17653
	Nominal air flow	m ³ /h	10000	10500	12200	12200	16300	11900	12400	16300
≥	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
Downflow Down	EC fan modulation	%	87	90	88	88	81	88	92	86
Down	Max ESP available@ nominal airflow	Pa	238	180	211	211	300	206	142	231
ă	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11749	11749	13626	13626	20573	13276	13276	19309
very	Nominal air flow	m ³ /h	10000	10500	12200	12200	16300	11900	12400	16300
tal/ ir Deli	ESP @ nominal airflow	Pa	0	0	0	0	0	0	0	0
/ Fron ont A	EC fan modulation	%	90	94	93	93	87	93	98	92
Downflow Frontal/ low Up Front Air D	Max ESP available@ nominalairflow	Pa	166	102	101	101	197	100	28	128
Downflow Frontal/ Downflow Up Front Air Delivery	EC fan modulation	%	100	100	100	100	100	100	100	100
Dow	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11230	11230	12890	12890	18930	12584	12584	17901
MODE	ELS		PX074	PX068	PX082	PX094	PX104	PX120	PX059	PX092

MODE	LS		PX074	PX068	PX082	PX094	PX104	PX120	EXT	EXT
Power	supply voltage	V/Ph/Hz				400 ±109	% / 3 / 50			
	Nominal air flow	m ³ /h	16650	18500	22350	22350	22350	-	10750	17100
>	ESP @ nominal airflow	Pa	50	50	50	50	50		50	50
Upflow	EC fan modulation	%	95	79	95	95	95	-	89	86
Ч	Max ESP available@ nominal airflow	Pa	129	349	117	117	117	-	232	261
	EC fan modulation	%	100	100	100	100	100	-	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	17682	23285	23285	23285	23285	-	12257	20292
-	Nominal air flow	m ³ /h	16650	18500	22350	22350	22350	-	10750	17100
ЧD	ESP @ nominal airflow	Pa	20	20	20	20	20	-	20	20
NO	EC fan modulation	%	95	78	94	94	94	-	95	95
Downflow	Max ESP available@ nominal airflow	Pa	100	338	102	102	102	-	101	103
á	EC fan modulation	%	100	100	100	100	100	-	100	100
-	Max. airflow (@ 100%, nominal ESP)	m ³ /h	17653	23459	23459	23459	23459	-	11336	18138
	Nominal air flow	m ³ /h	16650	18500	22350	22350	22350	-	10750	17100
2	ESP @ nominal airflow	Pa	20	20	20	20	20	-	20	20
lf L	EC fan modulation	%	88	75	90	90	90	-	91	88
Downflow Down	Max ESP available@ nominal airflow	Pa	209	390	176	176	176	-	180	205
ŏ	EC fan modulation	%	100	100	100	100	100	-	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	19309	24580	24580	24580	24580	-	11994	19689
± ~	Nominal air flow	m ³ /h	16650						10750	17100
r Frontal/ Up Front livery	ESP @ nominal airflow	Pa	0						0	0
ow Fron w Up Fi Delivery	EC fan modulation	%	94						94	94
ir De	Max ESP available@ nominal airflow	Pa	101						101	103
Downflow Downflow Air De	EC fan modulation	%	100						100	100
- 0	Max. airflow (@ 100%, nominal ESP)	m ³ /h	17901						11475	18379

Airflow characteristics

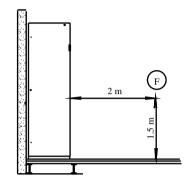
MODE	LS		PX041	PX045	PX047	PX051	PX057	PX044	PX054	PX062
Power	supply voltage	V/Ph/Hz				400 ±109	% / 3 / 50			
	Nominal air flow	m ³ /h	10000	10900	14500	15800	16300	12500	15500	16300
	ESP @ nominal airflow	Pa	50	50	50	50	50	50	50	50
Ň	EC fan modulation	%	86	94	75	81	83	71	84	88
Upflow	Max ESP available@ nominal airflow	Pa	252	138	381	311	282	425	262	211
	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11518	11518	19671	19671	19671	18505	18505	18505
	Nominal air flow	m ³ /h	10000	10900	14500	15800	16300	12500	15500	16300
4	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
N.	EC fan modulation	%	86	94	74	80	82	69	83	87
Downflow Up	Max ESP available@ nominal airflow	Pa	224	319	366	293	263	415	247	194
ă	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11481	11481	19712	19712	19712	18605	18605	18605
	Nominal air flow	m ³ /h	10000	10900	14500	15800	16300	12500	15500	16300
	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
ol ⊏	EC fan modulation	%	83	90	70	75	77	65	79	82
Downflow Down	Max ESP available@ nominal airflow	Pa	275	164	423	360	335	458	311	265
	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11928	11928	21058	21058	21058	19806	19806	19806
very	Nominal air flow	m ³ /h	10000	10900	14500	15800	16300	12500	15500	16300
tal/ r Deli	ESP @ nominal airflow	Pa	0	0	0	0	0	0	0	0
Fron ont Ai	EC fan modulation	%	85	93	73	79	81	67	82	86
Downflow Frontal/ Downflow Up Front Air Delivery	Max ESP available@ nominal airflow	Pa	224	105	366	294	264	415	247	194
nflow 'nflow	EC fan modulation	%	100	100	100	100	100	100	100	100
Dow	Max. airflow (@ 100%, nominal ESP)	m ³ /h	11161	11611	19954	19954	19954	18854	18854	18854

MODE	LS		PX074	PX068	PX082	PX094	PX104	PX120	PX059 EXT	PX092 EXT
Power	supply voltage	V/Ph/Hz				400 ±10%	% / 3 / 50			
	Nominal air flow	m ³ /h	17600	18500	24000	26000	27000	27000	11200	17950
_	ESP @ nominal airflow	Pa	50	50	50	50	50	50	50	50
Upflow	EC fan modulation	%	95	68	84	90	94	94	88	85
D	Max ESP available@ nominal airflow	Pa	119	457	269	184	137	137	225	258
	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	18505	28739	28739	28739	28739	28739	12516	21009
_	Nominal air flow	m ³ /h	17600	18500	24000	26000	27000	27000	11200	17950
ЧD	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
Downflow	EC fan modulation	%	94	66	83	90	93	93	95	88
vuf	Max ESP available@ nominal airflow	Pa	100	444	248	159	110	110	100	185
Ő	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	18605	28738	28738	28738	28738	28738	11738	20166
	Nominal air flow	m ³ /h	17600	18500	24000	26000	27000	27000	11200	17950
~	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20
ê E	EC fan modulation	%	88	64	80	86	89	89	91	87
Downflow Down	Max ESP available@ nominal airflow	Ра	182	474	297	216	172	172	156	199
	EC fan modulation	%	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	19806	30090	30090	30090	30090	30090	12156	20399
very	Nominal air flow	m ³ /h	17600						11200	17950
tal/ r Deli	ESP @ nominal airflow	Pa	0						0	0
Fron ont Ai	EC fan modulation	%	93						93	87
Downflow Frontal/ Downflow Up Front Air Delivery	Max ESP available@ nominal airflow	Pa	100						98	185
Do ^r Inflow	EC fan modulation	%	100						100	100
Dow	Max. airflow (@ 100%, nominal ESP)	m ³ /h	18854						11868	20412

Airflow characteristics

MOD	ELS		PX041	PX047	PX051	PX044	PX054	PX062	PX068	PX082	PX094	PX104
Powe	r supply voltage	V/Ph/Hz					400 ±10	% / 3 / 50				
	Nominal air flow	m ³ /h	9500	11650	11650	11350	11350	15200	18500	21200	21200	21200
	ESP @ nominal airflow	Pa	50	50	50	50	50	50	50	50	50	50
3	EC fan modulation	%	94	91	91	92	92	96	84	96	96	96
Upflow	Max ESP available@ nominal airflow	Pa	149	182	182	176	176	118	281	110	110	110
	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m³/h	10213	12612	12612	12338	12338	16097	22163	22163	22163	22163
	Nominal air flow	m ³ /h	9500	11650	11650	11350	11350	15200	18500	21200	21200	21200
٩	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20	20	20
⊃ ×	EC fan modulation	%	94	90	90	90	90	95	83	95	95	95
Downflow Up	Max ESP available@ nominal airflow	Pa	121	167	167	164	164	95	272	98	98	98
Ď	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	10199	12701	12701	12430	12430	16114	22336	22336	22336	22336
	Nominal air flow	m ³ /h	9500	11650	11650	11350	11350	15200	18500	21200	21200	21200
	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20	20	20
ð د	EC fan modulation	%	90	88	88	88	88	89	79	90	90	90
Downflow Down	Max ESP available@ nominal airflow	Pa	186	204	204	199	199	187	323	165	165	165
Δ	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m³/h	10729	13004	13004	12719	12719	17389	23336	23336	23336	23336
	Nominal air flow	m ³ /h	9500	11650	11650	11350	11350	15200				
Frontal	ESP @ nominal airflow	Pa	0	0	0	0	0	0				
	EC fan modulation	%	93	93	93	93	93	94				
Downflow	Max ESP available@ nominal airflow	Pa	121	103	103	103	103	99				
Dow	EC fan modulation	%	100	100	100	100	100	100				
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	10331	12347	12347	12097	12097	16338				

Tab. 6c - PXxxx F/D/H series, basic fan module


Tab. 6d – PXxxx F/D/H series, premium fan module

MOD			PX041	PX047	PX051	PX044	PX054	PX062	PX068	PX082	PX094	PX104
Powe	er supply voltage	V/Ph/Hz					400 ±10	% / 3 / 50				
	Nominal air flow	m³/h	10000	13200	15200	12500	15300	15900	18500	24000	25000	25000
	ESP @ nominal airflow	Pa	50	50	50	50	50	50	50	50	50	50
≥	EC fan modulation	%	94	77	87	77	92	95	73	91	95	95
Upflow	Max ESP available@ nominal airflow	Pa	136	361	226	341	160	115	389	168	120	120
	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	10588	17604	17604	16772	16772	16772	26488	26488	26488	26488
	Nominal air flow	m ³ /h	10000	13200	15200	12500	15300	15900	18500	24000	25000	25000
٩	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20	20	20
≥	EC fan modulation	%	94	76	86	76	91	94	72	91	94	94
Downflow Up	Max ESP available@ nominal airflow	Pa	107	348	208	331	146	102	377	149	99	99
ð	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
Δ	Max. airflow (@ 100%, nominal ESP)	m ³ /h	10580	17704	17704	16892	16892	16892	26528	26528	26528	26528
	Nominal air flow	m ³ /h	10000	13200	15200	12500	15300	15900	18500	24000	25000	25000
	ESP @ nominal airflow	Pa	20	20	20	20	20	20	20	20	20	20
۶ د	EC fan modulation	%	90	72	81	72	86	89	70	87	90	90
Downflow Down	Max ESP available@ nominal airflow	Pa	158	396	275	374	209	170	407	198	152	152
Δ	EC fan modulation	%	100	100	100	100	100	100	100	100	100	100
	Max. airflow (@ 100%, nominal ESP)	m ³ /h	10950	18758	18758	17837	17837	17837	27640	27640	27640	27640
	Nominal air flow	m ³ /h	10000	13200	15200	12500	15300	15900				
Frontal	ESP @ nominal airflow	Pa	0	0	0	0	0	0				
	EC fan modulation	%	92	74	84	74	89	92				
Downflow	Max ESP available@ nominal airflow	Pa	107	348	213	332	149	102				
Dow	EC fan modulation	%	100	100	100	100	100	100				
	Max. airflow (@ 100%, nominal ESP)	m³/h	10706	17937	17937	17122	17122	17122				

Liebert[®] PDX units have been designed with particular care for sound and vibration problems. The complete mechanical insulation of the ventilating section, combined with the special study of the aeraulic circuit as a consequence of accurate researches made in our thermodynamic laboratories and the oversizing of the components crossed by air offer the highest ventilation efficiency with the lowest sound emission.

Sound emission spectra

All tests are performed in our laboratories under the described conditions. The instrument is placed in (F) point, at 1.5 m from the ground in front of the machine at 2 m distance. Test conditions: Downflow unit with underflow air discharge and 20 Pa available external static pressure; Upflow unit with ducted air discharge and 50 Pa available external static pressure. Nominal air flow with clean F5 filters. Premium Fan Module, Digital Scroll Cooling system @100% cooling capacity. Ambient temperature 24°C and relative humidity 50%. Condensing temperature 45°C. **The noise levels refer to free field conditions.**

The following tables show sound levels for every octave band frequency. The data are referred to the main used configurations; for different configurations consult Hirating software

Sound emission spectra

The following tables show sound levels for every octave band frequency.

Tab. 7a – A/W versions and Upflow configuration, Standard Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL	Mode	Level				Octave ba	and frequ	ency (Hz)			Sound Leve
MODEL	woue		31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	62.6	62.6	64.4	61.4	57.3	54.3	50.4	43.8	34.7	59.8
PX041xA/W	(2)	SPL	68.8	68.8	65.2	62.9	61.7	60.1	59.8	50	41	65.4
	(3)	PWL	101.1	101.1	92.1	90.5	92.2	92	95.3	82.3	73.4	98.6
	(1)	SPL	65.2	65.2	67	64	59.9	56.9	53	46.4	37.3	62.4
PX045xA/W	(2)	SPL	71.4	71.4	67.8	65.5	64.3	62.7	62.4	52.6	43.6	68
	(3)	PWL	103.7	103.7	94.7	93.1	94.8	94.6	97.9	84.9	76	101.2
	(1)	SPL	53.2	53.2	67.6	55.2	54.2	52.1	49.6	41.9	31.8	57.9
PX047xA/W	(2)	SPL	53.4	53.4	67.6	55.4	54.5	52.8	50.6	44.3	36.1	58.5
	(3)	PWL	80.2	80.2	92.4	82.2	81.4	80.1	78.2	73.3	67	85.5
	(1)	SPL	55.5	55.5	69.9	57.5	56.5	54.4	51.9	44.2	34.1	60.2
PX051xA/W	(2)	SPL	55.7	55.7	69.9	57.7	56.8	55.1	52.9	46.6	38.4	60.8
	(3)	PWL	82.5	82.5	94.7	84.5	83.7	82.4	80.5	75.6	69.3	87.8
	(1)	SPL	56.5	56.5	70.9	58.5	57.5	55.4	52.9	45.2	35.1	61.2
PX057xA/W	(2)	SPL	56.7	56.7	70.9	58.7	57.8	56.1	53.9	47.6	39.4	61.8
	(3)	PWL	83.5	83.5	95.7	85.5	84.7	83.4	81.5	76.6	70.3	88.8
	(1)	SPL	51.8	51.8	66.2	53.8	52.8	50.7	48.2	40.5	30.4	56.5
PX044xA/W	(2)	SPL	52	52	66.2	54	53.1	51.4	49.2	42.9	34.7	57.1
	(3)	PWL	78.8	78.8	91	80.8	80	78.7	76.8	71.9	65.6	84.1
	(1)	SPL	57.3	57.3	71.7	59.3	58.3	56.2	53.7	46	35.9	62
PX054xA/W	(2)	SPL	57.5	57.5	71.7	59.5	58.6	56.9	54.7	48.4	40.2	62.6
	(3)	PWL	84.3	84.3	96.5	86.3	85.5	84.2	82.3	77.4	71.1	89.6
	(1)	SPL	58.8	58.8	73.2	60.8	59.8	57.7	55.2	47.5	37.4	63.5
PX062xA/W	(2)	SPL	59	59	73.2	61	60.1	58.4	56.2	49.9	41.7	64.1
,	(3)	PWL	85.8	85.8	98	87.8	87	85.7	83.8	78.9	72.6	91.1
	(1)	SPL	60.8	60.8	75.2	62.8	61.8	59.7	57.2	49.5	39.4	65.5
PX074xA/W	(2)	SPL	61	61	75.2	63	62.1	60.4	58.2	51.9	43.7	66.1
	(3)	PWL	87.8	87.8	100	89.8	89	87.7	85.8	80.9	74.6	93.1
	(1)	SPL	60.5	60.5	64.6	58.5	54.7	52.8	49.4	42.2	32.3	58.1
PX068xA/W	(2)	SPL	60.8	60.8	65.3	59.7	59.5	56.9	55	49.7	40.5	62.2
	(3)	PWL	87.7	87.7	92.6	87.5	90.9	87.6	87.2	83.8	75.3	93.6
	(1)	SPL	66.8	66.8	70.9	64.8	61	59.1	55.7	48.5	38.6	64.4
PX082xA/W	(2)	SPL	67.1	67.1	71.6	66	65.8	63.2	61.3	56	46.8	68.5
	(3)	PWL	94	94	98.9	93.8	97.2	93.9	93.5	90.1	81.6	99.9
	(1)	SPL	69.2	69.2	73.3	67.2	63.4	61.5	58.1	50.9	41	66.8
PX094xA/W	(2)	SPL	69.5	69.5	74	68.4	68.2	65.6	63.7	58.4	49.2	70.9
	(3)	PWL	96.4	96.4	101.3	96.2	99.6	96.3	95.9	92.5	84	102.3
	(1)	SPL	70.3	70.3	74.4	68.3	64.5	62.6	59.2	52	42.1	67.9
PX104xA/W	(2)	SPL	70.6	70.6	75.1	69.5	69.3	66.7	64.8	59.5	50.3	72
	(3)	PWL	97.5	97.5	102.4	97.3	100.7	97.4	97	93.6	85.1	103.4
	(1)	SPL	70.3	70.3	74.4	68.3	64.5	62.6	59.2	52	42.1	67.9
PX120xA/W	(1)	SPL	70.5	70.5	74.4	69.5	69.3	66.7	64.8	59.5	50.3	72
	(3)	PWL	97.5	97.5	102.4	97.3	100.7	97.4	97	93.6	85.1	103.4

LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

Tab. 7b – A/W versions and Upflow configuration, Extended Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL	Mode	Level			Sound Level							
WODEL	woue	Levei	31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	64.3	64.3	66.1	63.1	59	56	52.1	45.5	36.4	61.5
PX059xA/W	(2)	SPL	70.5	70.5	66.9	64.6	63.4	61.8	61.5	51.7	42.7	67.1
	(3)	PWL	102.8	102.8	93.8	92.2	93.9	93.7	97	84	75.1	100.3
	(1)	SPL	57.2	57.2	71.6	59.2	58.2	56.1	53.6	45.9	35.8	61.9
PX092xA/W	(2)	SPL	57.4	57.4	71.6	59.4	58.5	56.8	54.6	48.3	40.1	62.5
	(3)	PWL	84.2	84.2	96.4	86.2	85.4	84.1	82.2	77.3	71	89.5

LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

PWL sound power level

Tab. 7c – F/D/H versions and Uplow configuration, Standard Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL	Mode	Level			(Octave ba	and frequ	ency (Hz	:)			Sound Level
WODEL	woue	Levei	31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	65.3	65.3	67.1	64.1	60	57	53.1	46.5	37.4	62.5
PX041xF/D/H	(2)	SPL	71.5	71.5	67.9	65.6	64.4	62.8	62.5	52.7	43.7	68.1
	(3)	PWL	103.8	103.8	94.8	93.2	94.9	94.7	98	85	76.1	101.3
	(1)	SPL	54.6	54.6	69	56.6	55.6	53.5	51	43.3	33.2	59.3
PX047xF/D/H	(2)	SPL	54.8	54.8	69	56.8	55.9	54.2	52	45.7	37.5	59.9
	(3)	PWL	81.6	81.6	93.8	83.6	82.8	81.5	79.6	74.7	68.4	86.9
	(1)	SPL	58.5	58.5	72.9	60.5	59.5	57.4	54.9	47.2	37.1	63.2
PX051xF/D/H	(2)	SPL	58.7	58.7	72.9	60.7	59.8	58.1	55.9	49.6	41.4	63.8
	(3)	PWL	85.5	85.5	97.7	87.5	86.7	85.4	83.5	78.6	72.3	90.8
	(1)	SPL	55.4	55.4	69.8	57.4	56.4	54.3	51.8	44.1	34	60.1
PX044xF/D/H	(2)	SPL	55.6	55.6	69.8	57.6	56.7	55	52.8	46.5	38.3	60.7
	(3)	PWL	82.4	82.4	94.6	84.4	83.6	82.3	80.4	75.5	69.2	87.7
	(1)	SPL	60.7	60.7	75.1	62.7	61.7	59.6	57.1	49.4	39.3	65.4
PX054xF/D/H	(2)	SPL	60.9	60.9	75.1	62.9	62	60.3	58.1	51.8	43.6	66
	(3)	PWL	87.7	87.7	99.9	89.7	88.9	87.6	85.7	80.8	74.5	93
	(1)	SPL	60.9	60.9	75.3	62.9	61.9	59.8	57.3	49.6	39.5	65.6
PX062xF/D/H	(2)	SPL	61.1	61.1	75.3	63.1	62.2	60.5	58.3	52	43.8	66.2
	(3)	PWL	87.9	87.9	100.1	89.9	89.1	87.8	85.9	81	74.7	93.2
	(1)	SPL	63.3	63.3	67.4	61.3	57.5	55.6	52.2	45	35.1	60.9
PX068xF/D/H	(2)	SPL	63.6	63.6	68.1	62.5	62.3	59.7	57.8	52.5	43.3	65
	(3)	PWL	90.5	90.5	95.4	90.3	93.7	90.4	90	86.6	78.1	96.4
	(1)	SPL	70.1	70.1	74.2	68.1	64.3	62.4	59	51.8	41.9	67.7
PX082xF/D/H	(2)	SPL	70.4	70.4	74.9	69.3	69.1	66.5	64.6	59.3	50.1	71.8
	(3)	PWL	97.3	97.3	102.2	97.1	100.5	97.2	96.8	93.4	84.9	103.2
	(1)	SPL	71	71	75.1	69	65.2	63.3	59.9	52.7	42.8	68.6
PX094xF/D/H	(2)	SPL	71.3	71.3	75.8	70.2	70	67.4	65.5	60.2	51	72.7
	(3)	PWL	98.2	98.2	103.1	98	101.4	98.1	97.7	94.3	85.8	104.1
	(1)	SPL	69.6	69.6	73.7	67.6	63.8	61.9	58.5	51.3	41.4	67.2
PX104xF/D/H	(2)	SPL	69.9	69.9	74.4	68.8	68.6	66	64.1	58.8	49.6	71.3
	(3)	PWL	96.8	96.8	101.7	96.6	100	96.7	96.3	92.9	84.4	102.7

LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (50 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

Tab. 7d – A/W versions and Downflow Up configuration, Standard Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL					(Octave ba	and frequ	ency (Hz)			Sound Leve
MODEL	Mode	Level	31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	59.7	59.7	64.8	58.2	55.7	54.5	52	46.6	35.7	59.5
PX041xA/W	(2)	SPL	64	64	66.3	59	57.8	57.6	56.1	50.9	39.5	62.5
	(3)	PWL	94.9	94.9	94.4	86.4	86.5	87.3	86.8	81.8	69.9	92.3
	(1)	SPL	62.4	62.4	67.5	60.9	58.4	57.2	54.7	49.3	38.4	62.2
PX045xA/W	(2)	SPL	66.7	66.7	69	61.7	60.5	60.3	58.8	53.6	42.2	65.2
	(3)	PWL	97.6	97.6	97.1	89.1	89.2	90	89.5	84.5	72.6	95
	(1)	SPL	57	57	62.3	58.8	53.9	51.5	46.5	38.6	29.8	56.8
PX047xA/W	(2)	SPL	57.9	57.9	63.5	59.5	55.5	55.4	48.9	42.2	33.5	59.1
- ·	(3)	PWL	85.4	85.4	91.3	86.8	83.7	85.9	77.9	72.4	63.8	88.5
	(1)	SPL	59.4	59.4	64.7	61.2	56.3	53.9	48.9	41	32.2	59.2
PX051xA/W	(2)	SPL	60.3	60.3	65.9	61.9	57.9	57.8	51.3	44.6	35.9	61.5
	(3)	PWL	87.8	87.8	93.7	89.2	86.1	88.3	80.3	74.8	66.2	90.9
	(1)	SPL	60.4	60.4	65.7	62.2	57.3	54.9	49.9	42	33.2	60.2
PX057xA/W	(2)	SPL	61.3	61.3	66.9	62.9	58.9	58.8	52.3	45.6	36.9	62.5
	(3)	PWL	88.8	88.8	94.7	90.2	87.1	89.3	81.3	75.8	67.2	91.9
	(1)	SPL	55.3	55.3	60.6	57.1	52.2	49.8	44.8	36.9	28.1	55.1
PX044xA/W	(2)	SPL	56.2	56.2	61.8	57.8	53.8	53.7	47.2	40.5	31.8	57.4
	(3)	PWL	83.7	83.7	89.6	85.1	82	84.2	76.2	70.7	62.1	86.8
	(1)	SPL	61.1	61.1	66.4	62.9	58	55.6	50.6	42.7	33.9	60.9
PX054xA/W	(2)	SPL	62	62	67.6	63.6	59.6	59.5	53	46.3	37.6	63.2
	(3)	PWL	89.5	89.5	95.4	90.9	87.8	90	82	76.5	67.9	92.6
	(1)	SPL	62.7	62.7	68	64.5	59.6	57.2	52.2	44.3	35.5	62.5
PX062xA/W	(2)	SPL	63.6	63.6	69.2	65.2	61.2	61.1	54.6	47.9	39.2	64.8
1 700274/11	(3)	PWL	91.1	91.1	97	92.5	89.4	91.6	83.6	78.1	69.5	94.2
	(1)	SPL	64.9	64.9	70.2	66.7	61.8	59.4	54.4	46.5	37.7	64.7
PX074xA/W	(1)	SPL	65.8	65.8	71.4	67.4	63.4	63.3	56.8	50.1	41.4	67
	(3)	PWL	93.3	93.3	99.2	94.7	91.6	93.8	85.8	80.3	71.7	96.4
	(1)	SPL	59.2	59.2	65.9	59.6	55.1	54.2	51.6	44.3	35.8	59.4
PX068xA/W	(1)	SPL	61.8	61.8	66.3	59.9	56.6	56.4	54	47.1	38.6	61.1
	(3)	PWL	91	91	93.3	86.8	84.7	85.2	83	76.5	68	89.6
	(3)	SPL	66	66	72.7	66.4	61.9	61	58.4	51.1	42.6	66.2
PX082xA/W	(1)	SPL	68.6	68.6	73.1	66.7	63.4	63.2	60.8	53.9	45.4	67.9
	(3)	PWL	97.8	97.8	100.1	93.6	91.5	92	89.8	83.3	74.8	96.4
	(1)	SPL	68.5	68.5	75.2	68.9	64.4	63.5	60.9	53.6	45.1	68.7
PX094xA/W	(1)	SPL	71.1	71.1	75.6	69.2	65.9	65.7	63.3	56.4	47.9	70.4
F AU34XA/ W	(3)	PWL	100.3	100.3	102.6	96.1	94	94.5	92.3	85.8	77.3	98.9
	(3)	SPL	69.6	69.6	76.3	70	65.5	64.6	62	54.7	46.2	69.8
DV104-A	(1)	SPL	72.2	72.2	76.7	70.3	67	66.8	64.4	57.5	40.2	71.5
PX104xA/W	(2)	PWL	101.4	101.4	103.7	97.2	95.1	95.6	93.4	86.9	78.4	100
		SPL	69.6	69.6	76.3	70	95.1 65.5	95.6 64.6	93.4 62	54.7	46.2	69.8
	(1)	SPL	69.6 72.2	69.6 72.2	76.3	70			-	-	46.2 49	69.8 71.5
PX120xA/W	(2)						67	66.8	64.4	57.5	-	
	(3)	PWL	101.4	101.4	103.7	97.2	95.1	95.6	93.4	86.9	78.4	100

LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0|+2) dB.

(1) Only ventilation (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

Tab. 7e – A/W versions and Downflow Down configuration, Extended Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL	Mode Level		Sound Level									
WODEL		Level	31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	60.6	60.6	65.7	59.1	56.6	55.4	52.9	47.5	36.6	60.4
PX059xA/W	(2)	SPL	64.9	64.9	67.2	59.9	58.7	58.5	57	51.8	40.4	63.4
	(3)	PWL	95.8	95.8	95.3	87.3	87.4	88.2	87.7	82.7	70.8	93.2
	(1)	SPL	60.8	60.8	66.1	62.6	57.7	55.3	50.3	42.4	33.6	60.6
PX092xA/W	(2)	SPL	61.7	61.7	67.3	63.3	59.3	59.2	52.7	46	37.3	62.9
	(3)	PWL	89.2	89.2	95.1	90.6	87.5	89.7	81.7	76.2	67.6	92.3

LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.

Level

SPL sound pressure level

PWL sound power level

Tab. 7f – F/D/H versions and Downflow Up configuration, Standard Height, Digital Scroll Cooling System @ 100% cooling capacity, Premium Fan Module, nominal airflow

MODEL	Mode	Loval				Octave ba	and frequ	ency (Hz)			Sound Level
MODEL	wode	Level	31.5	63	125	250	500	1000	2000	4000	8000	[dB(A)]
	(1)	SPL	62.1	62.1	67.2	60.6	58.1	56.9	54.4	49	38.1	61.9
PX041xF/D/H	(2)	SPL	66.4	66.4	68.7	61.4	60.2	60	58.5	53.3	41.9	64.9
	(3)	PWL	97.3	97.3	96.8	88.8	88.9	89.7	89.2	84.2	72.3	94.7
	(1)	SPL	58.2	58.2	63.5	60	55.1	52.7	47.7	39.8	31	58
PX047xF/D/H	(2)	SPL	59.1	59.1	64.7	60.7	56.7	56.6	50.1	43.4	34.7	60.3
	(3)	PWL	86.6	86.6	92.5	88	84.9	87.1	79.1	73.6	65	89.7
	(1)	SPL	62.4	62.4	67.7	64.2	59.3	56.9	51.9	44	35.2	62.2
PX051xF/D/H	(2)	SPL	63.3	63.3	68.9	64.9	60.9	60.8	54.3	47.6	38.9	64.5
	(3)	PWL	90.8	90.8	96.7	92.2	89.1	91.3	83.3	77.8	69.2	93.9
	(1)	SPL	58.8	58.8	64.1	60.6	55.7	53.3	48.3	40.4	31.6	58.6
PX044xF/D/H	(2)	SPL	59.7	59.7	65.3	61.3	57.3	57.2	50.7	44	35.3	60.9
	(3)	PWL	87.2	87.2	93.1	88.6	85.5	87.7	79.7	74.2	65.6	90.3
	(1)	SPL	64.5	64.5	69.8	66.3	61.4	59	54	46.1	37.3	64.3
PX054xF/D/H	(2)	SPL	65.4	65.4	71	67	63	62.9	56.4	49.7	41	66.6
	(3)	PWL	92.9	92.9	98.8	94.3	91.2	93.4	85.4	79.9	71.3	96
	(1)	SPL	65.5	65.5	70.8	67.3	62.4	60	55	47.1	38.3	65.3
PX062xF/D/H	(2)	SPL	66.4	66.4	72	68	64	63.9	57.4	50.7	42	67.6
	(3)	PWL	93.9	93.9	99.8	95.3	92.2	94.4	86.4	80.9	72.3	97
	(1)	SPL	61.9	61.9	68.6	62.3	57.8	56.9	54.3	47	38.5	62.1
PX068xF/D/H	(2)	SPL	64.5	64.5	69	62.6	59.3	59.1	56.7	49.8	41.3	63.8
	(3)	PWL	93.7	93.7	96	89.5	87.4	87.9	85.7	79.2	70.7	92.3
	(1)	SPL	69.2	69.2	75.9	69.6	65.1	64.2	61.6	54.3	45.8	69.4
PX082xF/D/H	(2)	SPL	71.8	71.8	76.3	69.9	66.6	66.4	64	57.1	48.6	71.1
	(3)	PWL	101	101	103.3	96.8	94.7	95.2	93	86.5	78	99.6
	(1)	SPL	70.2	70.2	76.9	70.6	66.1	65.2	62.6	55.3	46.8	70.4
PX094xF/D/H	(2)	SPL	72.8	72.8	77.3	70.9	67.6	67.4	65	58.1	49.6	72.1
	(3)	PWL	102	102	104.3	97.8	95.7	96.2	94	87.5	79	100.6
	(1)	SPL	70.2	70.2	76.9	70.6	66.1	65.2	62.6	55.3	46.8	70.4
PX104xF/D/H	(2)	SPL	72.8	72.8	77.3	70.9	67.6	67.4	65	58.1	49.6	72.1
	(3)	PWL	102	102	104.3	97.8	95.7	96.2	94	87.5	79	100.6

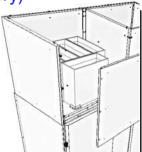
LEGEND

The sound levels global and for each octave band are expressed in dB with a tolerance of (-0/+2) dB.

(1) Only ventilation (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(2) Working compressor (20 Pa available external static pressure), 2 m in front of the unit and 1.5 m height, in free field conditions.

(3) Working compressor, on discharge side.


Level

SPL sound pressure level

Plenum with silencing cartridges (accessory)

These are special cartridges made of self—extinguishing material with a high noise attenuation capacity. They are guaranteed against disintegration and release of particles do to friction of the air. It is possible to install the supplied plenum 600mm height with **one** row of cartridges over the unit.

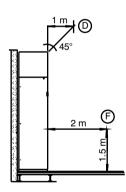
Despite a small additional pressure drop, these cartridges provide a remarkable sound power level reduction.

Tab. 7g - Features of silencing cartridges

Mandala	Dimensions	Free Section	Cartridge Number
Models	[mm]	[mm]	
PX041-PX045-PX059	500 x 195 x 500	400 x 100	7
PX047—PX051—PX057—PX044 PX054—PX062—PX074—PX092	500 x 195 x 500	400 x 100	11
PX068–PX082–PX094 PX104–PX120	500 x 195 x 500	400 x 100	16

Tab. 7h - Attenuation in dB silencing cartridges

		A	ttenuatio	n in dB at	different fre	equency valu	ies (Hz)	
row no.	63	125	250	500	1000	2000	4000	8000
1	1	4	7	15	26	28	27	14


Tab. 7i – Pressure drops silencing cartridges

	Press	Pressure drops (Pa) for each module at different air flows (m ³ /s)									
row no.	0.2	0.3	0.4	0.5	0.6						
1	1	2	4	7	9						

Tab. 7j – Approximate variations of Sound Pressure Level

Variations compared to values measured without noise reduction duct: free discharge (for Upflow units) or free suction (Downflow units).

Position **F**: 2 meters from the front, 1.5 meter from the ground Position **D**: 1 meter from the front, 45° from the top

linit Configuration	Diamum Liaisht	Cartridge Rows	Position		
Unit Configuration	Plenum Height	Number	F	D	
Downflow Up	600 mm	1	-4.0 dB	-7.0 dB	
Upflow	600 mm	1	—7.5 dB	–12.0 dB	

Fans (CRAC unit)

The units install innovating EC fans incorporating an impeller with curved blades corrosion resistant made of fibreglass plastic. This new technology allows keeping the current high-strength of aluminium alloy adding the benefits of light weight and full flexibility on blade design of the new material. The good dampening behaviour of the plastic also helps to reduce noise emissions.

The optimised aerodynamic design permits achieving high energy efficiency and a reduced noise level.

Other benefits came form the EC motors, it is comparable to the DC brush–less motor, except that the magnetic field

is produced by permanent magnets in the rotor; the commutation is done electronically and therefore without wear.

The EC Fans are controlled via a linear interface, 0–10Vdc, through iCOM.

The motor is three-phase with IP54 protection; provided with internal thermal protection.

The fan wheel is statically and dynamically balanced; the bearings are self-lubricating.

Compressor

Scroll compressors.

The scroll is a simple compression concept first patented in 1905. A scroll is an involute spiral which, when matched with a mating scroll form, generates a series of crescent shaped gas pockets between the two members. During compression, one scroll remains stationary (fixed scroll) while the other form (orbiting scroll) is allowed to orbit (but not rotate) around the first form. As this motion occurs, the pockets between the two forms are slowly pushed to the center of the two scrolls while simultaneously being reduced in volume. When the pocket reaches the center of the scroll form, the gas, which is now at a high pressure, is discharged out of a port located at the center. During compression, several pockets are being compressed simultaneously, resulting in a very smooth process. Both the suction process (outer portion of the scroll members) and the discharge process (inner portion) are continuous.

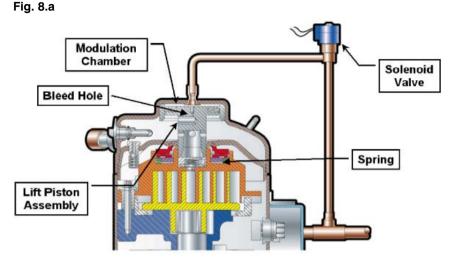
High COP (Coefficient Of Performance)

High MTBF (Mean Time Between Failure)

Low sound level

Vibration-damped

Provided with internal thermal protection


Low pickup current (equalization of the internal pressures).

Digital Scroll compressor (Digit 6)

When it is mandatory to have a precise and continuous equivalence between the load and the cooling capacity. We get this through the innovative compressor: the Copeland Digital Scroll. It uses a simple and effective method to modulate the capacity, giving unparalleled performance in the modulation field.

The controlled separation of the scrolls is achieved using a solenoid valve and a bypass connection between the discharge chamber and the gas intake (See Fig.8.a). The scrolls are designed so that the upper scroll can separate from the bottom scroll by 1mm vertically. A piston is attached on top of the upper scroll and will lift up the upper scroll when it moves up. When the solenoid valve is closed, the Digital Scroll operates as a normal scroll compressor and the compressed gas is discharged at high pressure through the normal piping. When the solenoid valve is opened, the discharge pressure. This leads to less pressure becomes connected, thereby releasing some of the discharge pressure. This leads to less pressure holding the piston down thereby causing the piston to shift upwards, which in turn lifts the upper scroll. Once the scrolls separate, any gas passing through is no longer compressed.

The Digital Scroll operates in two stages – the "Loaded state", when the solenoid valve is normally closed and "Unloaded state", when the solenoid valve is open. During the loaded state the compressor operates like a standard scroll and delivers full capacity and mass flow. However, during the unloaded state, there is no capacity and no mass flow through the compressor.

At this stage, let us introduce the concept of a cycle time. A cycle time consists of a "Loaded State" time and "Unloaded State" time. The duration of these 2-time segments determine the capacity modulation of the compressor. Example: In a 20 seconds cycle time, if the loaded state time is 10 seconds and the unloaded state time is 10 seconds, the compressor modulation is 50%. If for the same cycle time, the loaded state time is 15 seconds and the unloaded state time is 5 seconds, the compressor modulation is 75%. The capacity is a time averaged summation of the loaded state and unloaded state. By varying the loaded state time and unloaded state time, any capacity between 10% and 100% can be delivered by the compressor. Hence, the Copeland Digital Scroll can achieve a continuous modulation of AC capacity to suit the system's needs precisely.

We could vary the cycle time and still achieve the same effective capacity, but Copeland and Liebert have done extensive testing to optimize the cycle time in this application.

Electronic Expansion Valve (Digit 6)

The valve is designed for modulating control of refrigerant circuits with highspeed and high precision. The EEV provides superior performance compared to a Thermostatic Expansion Valve (TXV), due to:

- · Precise flow control
- · Positioning time

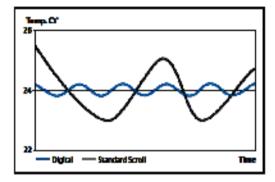
EEV ensures a better control on super heating at the end of the evaporator, ensuring at the same time that compressor will never be filled by liquid from the 10% to 110% of its nominal capacity, instead a mechanical one cannot ensure it. It has to be calibrated and then it will work properly but only around the calibration point.

This means that a TXV works better (i.e. better control, longer life) with a condensing pressure as much as possible constant. For such reason with TXV the condensing temperature is kept around 45°C as set point. But during the coldest period the condensing temperature can be lowered and the electronic expansion valve adapts to this new situation. This permits an increase of the cooling capacity of the unit, a decrease of the unit power input and so increase the energy efficiency of the entire Liebert[®] PDX unit.

Liebert[®] PDX allows having an option the EEV both on Standard Scroll and on Digital Scroll. The choice is driven by the application:

- Only temperature control or wide range or Humidity band T→In this case the EEV gives a great
 efficiency effects both with Standard and Digital Scroll technology. To get the biggest advantage,
 a different pressure set point can be used for the fan speed controller of the Liebert remote
 condenser.
- Close Humidity control → Often, even the TXV valve allows to get good results, mainly thanks to the Digital Scroll modulation.

Digital range – Major Benefits


Emerson Network Power is proud to offer a new possibility to have the best technologic evolutions in your cooling unit, adding to an already optimum product a wide range of benefits: Modulation (as explained in Digital Scroll Chapter):

- Perfect match between Cooling Capacity and Heat Load.
- Lower power input at partial load.
- Quick adaptation to changing heat load.
- · Possibility to size cooling system to overcome future heat load growth

Precision Control:

- More precise room temperature control.
- Once you make a direct comparisons between standard units using standard scroll compressors and Liebert[®] PDX, is necessary to notice that Liebert[®] PDX has a very high precision in control room temperature; so all the advantages exponentially increase comparing Liebert[®] PDX to a standard unit with the same tolerances on controlling the temperature.

Fig. 8.b

In fact to guarantee the same precision, standard scroll technology has to use additional technologies, like hot gas by pass or hot gas injection, and others, to avoid the compressor shut off and to avoid loosing temperature control. All these techniques are very energy expensive and for this reason we can say that Liebert[®] PDX offers more requiring less.

Availability & Reliability:

- Less number of start/stop cycling means longer unit life.
 - As described previously, at partial load, a Digital Scroll does not work with ON OFF configuration. This avoids peaks in adsorbed power and reduces stress on components. This increases the life of the unit, greatly reducing failure due to fatigue.
- · Wide operational limits for higher availability.

To maximise the possible advantages coming from the thermodynamic functioning of Liebert[®] PDX, Emerson Network Power has developed a special software; with an additional pressure transducer the control, when external air temperature increases over standard functioning limits, commands the compressor to modulate his capacity. Forcing the condensing temperature to decrease under the limit, even when at partial load, the unit guarantees refrigeration; standard units in the same condition would fail. So when you size your requested unit you consider the worst external conditions; it can happen that occasionally during the year it will be hotter than your design ambient temperature. In this case a standard unit will shut down due to high condensing temperatures, leaving your Data Center without cooling when the requirement is at its highest, however your Liebert[®] PDX will guarantee a partial cooling capacity. So System availability is guaranteed even during extreme operating conditions.

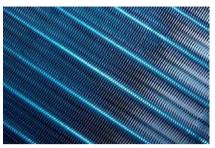
Increased Efficiency due to:

• COP and SHR Effect.

At partial load alternation between loaded and unloaded states involves a reduction on nominal mass flow both on the evaporator and on the condenser. This gives digital technology two important thermodynamic advantages: higher evaporating temperatures and lower condensing temperatures. These are both important characteristics, the evaporating temperature is directly related to cooling capacity, and a higher evaporating temperature means a higher cooling capacity. Condensing temperature is directly related to power input, and lower it is the lower the power consumption of the compressor. Consequently the Digital scroll increases its COP at partial load (higher then 75%) in fact the higher evaporating temperature and lower condensing temperature gives higher cooling capacity and lower power input.

- EEV Effect (as explained in the relevant chapter).
- EC Fan Effect (as explained in the relevant chapter).

Thanks to all these effects we can have a reduction up to 50% on the yearly energy consumption and a return of investment lower then half a year (considering a comparison versus a standard Room Cooling Unit with standard Scroll, standard AC Fan and standard Thermostatic Expansion Valve, placed in a city in the Central Europe).

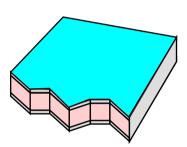

Refrigerant

The units are designed for being used with refrigerant R410A.

Coils

DX refrigerant / Chilled water/room air

High frontal surface. Made of copper pipes and aluminium fins. Fins treated with hydrofile styrol acrylic paints to withstand corrosive atmospheres. Low pressure drop. High SHR (Sensible Heat Ratio). In dual circuit units, the dual stage coil increases the


SHR, at partial load the efficiency is strongly increased due to the use of the total amount of airflow and frontal coil surface.

Frame and panels

The sheet steel structure, painted with epoxy-polyester powders, is assembled by stainless steel rivets; the paneling system ensures higher stiffness; there will also be some pluggings for guaranteeing both safety and high acoustic absorption.

The frontal panel is assembled on hinges to make the access easier; this can be opened by the fast closing lock.

The rear and side panels are screwed to the supports. The rear panel is screwed directly to the frame. The panels are lined with thermoacoustic insulating material –

class 0 (ISO 1182.2) with thermal conductivity 0.04 W/mK and density from 20 to 50 kg/m³. The internal sheet metal parts are made of hot–dip galvanized steel in order to provide corrosion protection and avoid zinc whiskers growing.

Electric panel

The electric panel is housed in the frontal part of the unit, behind the right door. It is insulated against the air flow and protected by a cover, so as to avoid tampering by non—authorized personnel and to protect the electric panel parts supplied with a voltage higher than 24 V.

Once open the electrical panel could be rotate on the right to make the installation procedure and maintenance easier.

The electric panel complies with the norm 204-1 IEC.

The air conditioners have been provided for operating at 400 V \sim /3/50 Hz+N+G (as alternative execution, the version with 230 \sim V/3/50Hz + G can be supplied in the majority of cases).

Magnetothermal switches are supplied as protection of every electric component.

A single—phase transformer has been provided for supplying power to the secondary circuit at 24V. There will be an automatic start—up after a possible stop due to power supply lack.

Additional terminals for remote start-up and carry of some operating conditions (fans and compressors) or connection of additional devices (Liquistat, Firestat, Smokestat, clogged filters) are set in series on the terminal panel of the electric panel. On the terminal panel there is also a clean contact for the remote signalling of the general alarm.

The panels are lined with thermoacoustic insulating material - class 0 (ISO 1182.2).

Humidification (Digit 11)

 ${\sf Liebert}^{\circledast}$ PDX offers the possibility to choose between Electrode, Ultrasonic and Infrared Humidifiers.

Depending on which is the priority between the water characteristics and the efficiency Liebert[®] PDX is able to give the right solution:

- Ultrasonic Humidifier: Top Efficient solution to manage the humidification process. The Ultrasonic Humidifier needs a correct water treatment to allow the system work properly.
- Infrared Humidifier: this is the perfect solution whenever there is not the possibility to have a high quality of water. In fact Infrared Humidifier does not suffer any performance decade based on

water conductivity (as happens for common electrode solution); additionally it does not require a specific water treatment.

 Electrode Humidifier: this is the most common solution in European Data Center, providing efficiency level once it works with the correct water conductivity.

For complete details about humidifiers solution see Chapter 11.

Electrical Heaters (Digit 13)

for Heating Mode and reheating in dehumidification mode.

A stage of electrical heater is available for each Liebert[®] PDX. If necessary for units with 2 or 3 fans it is possible install as well a second stage of electrical heater to increase significantly the heating power.

Each stage of heaters are made of finned armored stainless steel AISI 304. to maintain a low surfaces power density. Ionization effects are eliminated owing to the low heater surface temperature.

There an ON-OFF type electronic temperature controller, a safety thermostat with manual reset, a

circuit breaker for short—circuit protection and harness protection from possible accidental contact. The electrical heating can work as well the dehumidification system is activated; in this way humidity sensor and indicator are necessary and provided on request.

Electrical heating can be installed combined with hot gas or hot water heating.

		ELECTRICA	_ HEATING	
Model	Std. C	apacity	Opt. Hig	h Capacity
	FLA [A]	nominal power [kW]	FLA [A]	nominal power [kW]
		(400V / 3Ph / 50H	z)	
PX041				
PX045			-	-
PX059				
PX047			21.6 *	15 *
PX051			21.6 *	15 *
PX057			21.6	15
PX044			21.6 *	15 *
PX054			21.6 *	15 *
PX062			21.6	15
PX074	10.8	7.5	21.6	15
PX092			21.6	15
DVOCO		-	21.6 **	15 **
PX068			32.5 ***	22.5 ***
PX082			21.6 **	15 **
F 7002			32.5 ***	22.5 ***
PX094			21.6 **	15 **
7J34			32.5 ***	22.5 ***
PX104			21.6 **	15 **
-			32.5 ***	22.5 ***
PX120			32.5	22.5

Tab. 8a - Features of Electrical heating system at nominal airflow

* Not available with Basic Fan Module.

* With Basic Fan Module.

*** With Premium Fan Module.

Hot Water Coil (Digit 13)

for heating and reheating mode and dehumidification system

The hot water heating is a copper pipes and aluminium fins coil, with one row, test pressure 30 bar and includes an exhaust valve. A three—way on—off valve directly driven by the microprocessor controller is supplied as standard. A hot water thermostat (provided by the customer) is installed to indicate the presence of hot water at the correct temperature. The heating system can work even if the dehumidification system is activated; in this case humidity sensor and an indicator are necessary and are provided on request.

Note: Hot water power in F, D, H units could slightly differ from hot water power in A, W units.

MODELS		PX041	PX045	PX047	PX051	PX057	PX044	PX054	PX062
rows	no.	2	2	2	2	2	2	2	2
surface	m ²	0.324	0.324	0.549	0.549	0.549	0.549	0.549	0.549
	indo	or temp. 24	°C, 50% R.H	l.; water inle	t/outlet temp	perature 80/6	65°C		
Power (re—heating)	kW	25.4	26.8	41.6	44.7	45.9	40.7	46.7	48.6
water flow	l/s	0.413	0.437	0.679	0.729	0.748	0.664	0.762	0.793
coil side pressure drops	kPa	1	1	1	1	1	1	1	1
total pressure drops	kPa	10	11	24	28	29	23	30	33
MODELS		PX074	PX068	PX082	PX094	PX104	PX120	PX059 EXT	PX092 EXT
rows	no.	2	2	2	2	2	2	2	2
surface	m ²	0.549	0.909	0.909	0.909	0.909	0.909	0.324	0.549
	indo	or temp. 24	°C, 50% R.H	l.; water inle	t/outlet temp	perature 80/6	65°C		
Power (re—heating)	kW	51.6	66.6	78.8	83	85.8	87.5	23.2	42.3
water flow	l/s	0.842	1.085	1.285	1.353	1.399	1.427	0.377	0.69
coil side pressure drops	kPa	1	1	1	1	1	1	1	1
total pressure drops	kPa	37	61	85	94	100	104	8	25

Tab. 8b - Features of hot water reheat system at nominal airflow, Premium Fan Module

Hot Gas Coil (Digit 13) DX units for Reheating Mode only

Liebert[®] PDX can be supplied with a reheating system that uses the heat which is normally transferred to the condenser, thus saving energy.

This system is activated during the dehumidification phase, when the temperature is below its setpoint. A control valve prevents the refrigerant from flowing into the reheat coil when not required. Hot gas reheat is available as an alternative to hot water reheat.

Note: Reheating capacity in F, D, H units could slightly differ from reheating capacity in A, W units.

MODELS U/O A/W/F/D/H		PX041	PX045	PX047	PX051	PX057	PX044	PX054	PX062
rows	no.	2	2	2	2	2	2	2	2
surface	m ²	0.324	0.324	0.549	0.549	0.549	0.549	0.549	0.549
Reheating capacity (Scroll Cooling System) (at 24°C, 50%, condensing temperature 45°C)	kW	26.8	29.6	30.6	35.4	39.4	13.9	17.2	19.5
Reheating capacity (Digital Scroll Cooling System) (at 24°C, 50%, condensing temperature 45°C)	kW	26.5	29.4	32.4	34.7	39.3	14	17.2	19.4

MODELS U/O A/W/F/D/H	PX074	PX068	PX082	PX094	PX104	PX059 EXT	PX092 EXT	
rows	no.	2	2	2	2	26	2	2
surface	m ²	0.549	0.909	0.909	0.909	0.909	0.324	0.549
Reheating capacity (Scroll Cooling System) (at 24°C, 50%, condensing temperat- ure 45°C)	kW	22.3	20.4	26.5	29.3	33.5	38.5	27.4
Reheating capacity (Digital Scroll Cooling System) (at 24°C, 50%, condensing temperature 45°C)	kW	22.2	20.2	27.2	30.8	32.9	38.4	27.2

Tab. 8d - Reheating mode during the dehumidification

First step	Hot gas reheat
Second step	Hot gas reheat + Heaters first step
Third step	Hot gas reheat + Heaters total

Air filters

Removable filters are installed inside the unit before heat exchanger and fans. The F5 standard filters made by paper material and are completely recyclable. Additional high efficiency filters F6, F7 are available as optional. For complete details about filter sections see chapter 9.

Dual Power Supply (Digit 17)

 ${\sf Liebert}^{\circledast}$ PDX offers as option the possibility to have dual power supplies in order to have the units up and running once the main power supply fails.

Liebert[®] PDX allows choosing between 3 different solutions:

Dual Power Supply Parallel

2 separate power supplies: during normal working mode both are present, during emergency situation only the main one. This means that during emergency mode ventilation redundancy is granted disabling heating, humidifying and compressor power input. This last option allows during emergency mode to reduce unit power absorption and therefore Genset or UPS sizes.

• Dual Power Supply Alternate

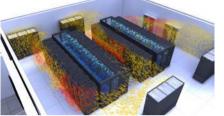
2 separate power supplies: each power supply is able to completely feed the unit. (ATS) Alternate Transfer Switch makes the switch in case of main line failure. In case of failure of the main supply the unit automatically switches to the second power supply. This allows to have a complete power supply redundancy or in case needed to have during emergency mode full cooling redundancy disabling heating and humidifying. This last option allows during emergency mode to reduce unit power absorption and therefore Genset or UPS sizes.

The solution allows having the following benefits:

- possibility to have together Automatic or Manual changeover.
- transfer switching time between power A and power B 1,2-1,5sec.
- Dual Power Supply Alternate Premium Version with UPS for iCOM board

The switch between one power supply and the other makes the units restarting as it pass through the off position. The solution with iCOM Control kept alive under UPS allows the control of the unit to stay powered. This means that the unit is not rebooting and so immediately ready again to cool the room.

The solution with integrated UPS for the iCOM Control keeps iCOM alive for xx minutes, so even if both power supplies are missing this allow a unit to be ready to continue working once one of the two will come back.

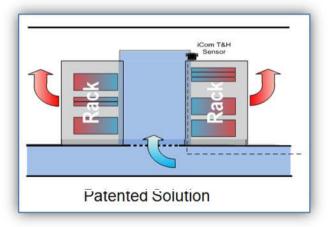

Smart AisleTM Solution (Digit 18)

To drastically reduce the energy consumption and thus truly optimize the investment in the installation, Emerson Network Power offers the solution that will exactly adjust the cooling capacity to the needs of the servers. This solution includes the separation of the cold and hot zone through a cold aisle, or hot aisle, containment.

This allows the cooling units to operate with higher air temperature therefore increasing both capacity and efficiency.

The solution is designed to have the latest cooling unit (compressor modulating technology with digital scroll, EC fan, Electronic Expansion Valve) with the best control for the Data Center application and well optimized distribution of the air and of the temperatures.

The proposal consists of precision control of temperature, humidity and air flow rate at the server level to ensure exactly the airflow required by the server at the conditions they need to produce maximum life and highest reliability.



The solution is Smart AisleTM control for the cold aisle containment, Digital Air cooled modulating compressor in a unit with EC Fan to have all the best technologies in the market controlled in the most efficient way.

Liebert[®] PDX as part of Smart AisleTM cooling solution is the best answer to ensure the right cooling minimizing the cooling operating costs.

The Liebert[®] PDX Smart AisleTM comes with return and supply sensors, remote sensors as well as ready to drive a damper to aeraulically insulate the units not working and a button to force the unit on full cooling for emergency situations.

Emerson Network Power's cold aisle containment solution can achieve an energy saving of up to 65% higher than other manufacturers' cooling units with standard technology.

The unit will drive the compressor(s) based on the supply temperature, while the airflow will be driven based upon the patented control method on the remote temperature and humidity sensors installed on the calibrated holes of the Smart AisleTM.

This allows equalizing the pressures within inside and outside the closed aisle and therefore matching exactly the airflow required by the servers. This means higher availability for the servers' equipment that will be working with the right airflow and the right temperature and minimum power consumption as the unit will not waste any single watt on not needed cooling.

Fig. 8.c Remote temperature and humidity sensor)

Liebert[®] ECONOMIZER Solution (Digit 18)

The usage of direct freecooling is more and more common on Data Center applications. Compared to other applications the Data Center application still marks a difference on the usage of the Direct Freecooling. The discriminating factor is the humidity control.

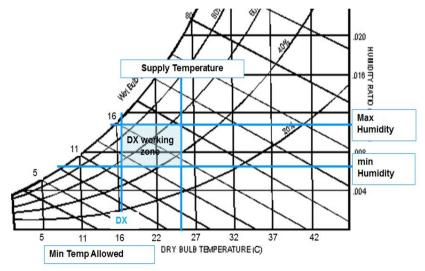
In fact, the solution with the direct Freecooling can be limited not only by the temperatures outside but in particular by the humidity levels. Dry Air can absorb different quantities of vapor depending

on its temperature. At a given temperature there is a maximum quantity of grams of vapour by each kilogram that can be taken by the air. More vapour would become solid as liquid water. Given a specific condition the air will have a temperature and a quantity of humidity (this is defined as absolute humidity). If we compare this level of humidity with the maximum level that the air at that temperature can absorb we have the relative humidity. (This from a logic point of view on the physics: Relative humidity is the ratio of the partial pressure of water vapor in an air—water mixture to the saturated vapor pressure of water at a prescribed temperature – wikipedia).

As example: at 18°C the maximum level of humidity is 12,89 g/kg. In case of 18°C 50% the absolute humidity is 6.38 g/kg.

The hotter is the air the more humidity it can absorb.

These rules are clearly represented on the physics using the psychrometric chart that is presenting the different conditions of temperature and humidity at the pressure of sea level.


The behaviour of fresh air freecooling is strongly linked to these physic rules. In fact during winter time the air is cold and when is cold it can have a maximum humidity which is extremely low. (As example at 5°C the maximum level of humidity is already below the ASHRAE recommended limit and as matter of comparison it corresponds to same absolute humidity that you have at 24°C 28%). Therefore in such times you enter in the Data Center very dry air thus requiring the use of the humidifier (element with high energy consumption) in compensation.

Similarly, in wet periods in the spring / autumn, the risk is opposite, that you enter in the data center air that requires dehumidification. (As example air condition of 15° C 100% typical foggy condition corresponds to the absolute humidity level that you have at 24° C 80%).

An efficient control for data centers is then what gives you the possibility to set limits that allow you to choose whether or not to use the outside air to avoid using it when energy is not convenient.

This is **Liebert**[®] **Economizer**. It allows setting limits in terms of both temperature and humidity and use the air only when it makes sense from all energy points of view.

So Emerson Network Power proposes a complete solution of direct freecooling specifically thought and developed to address data center needs.

The solution includes in the unit Return and Supply temperature sensors, an external temperature and humidity sensor to check external absolute humidity and solution to correctly drive the dampers installed in a plenum above the unit for the mixing of the external and return air.

iCOM control therefore if external temperature and humidity are within the correct range allows the direct freecooling and complete the required acting the compressors. For digital scroll there is the great opportunity to exploit the modulation capacity to always provide exactly what is needed in terms of modulation.

Whenever the cooling from outside is enough to fully cool the room, the unit will work on pure freecooling mode.

The solution is therefore optimizing to provide the highest saving and the biggest availability thanks to the full Direct Expansion back up provided by the compressor(s).

Standard filters

Removable filters are installed inside the unit before fan and heat exchanger.

The standard filtration grade is F5 (CEN EN779 – respectively corresponding to EU5 according to Eurovent EU4/5).

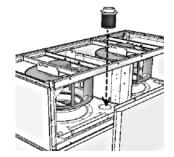
The filter pleated structure gives high filtration efficiency, low pressure drop and permit to use the filter without metallic or

cardboard frame. The filter media is composed by fibre and latex.

High efficiency filters (accessory)

An optional extension hood with high efficiency filters is available, filtration class F6, F7 and F9 in accordance with the CEN EN 779 standard, are made of fibreglass filter media. The filters are placed in "V" sections with a solid external frame in polypropylene, and can withstand remarkable pressure and flow variations. These filters will be installed within an additional duct on the unit top.

The additional pressure drop in comparison with F5 sdt filters are indicated in the following graphs (Tab 8c-h). For dimensions see Fig. 12.a.



Clogged filter alarm (Digit 14)

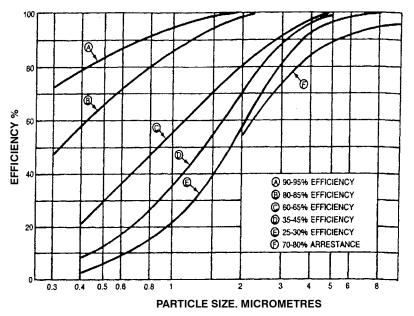
A differential static pressure gauge after and before the filter gives a signal when the filter is dirty.

Fresh air kit (accessory)

The fresh air kit, optional, has a G3 class filter installed on the intake side of the fan and is connected to the unit with a 100 mm diameter plastic duct. As the fresh air intake is positioned close to the fan suction, it will easily mix the fresh air with the recirculation air.

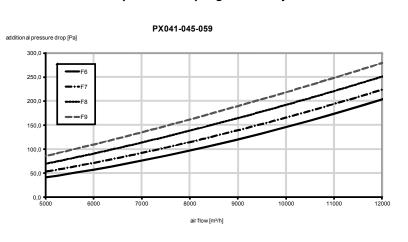
Air Filters general information

Recently new test methods and configuration systems have been developed for all type of filters. In Europe, CEN is working to establish common standards, in the United States ASHRAE Standards has been in use since 1968 and replaced by ANSI/ASHRAE 52.1–1992. So, in order to have a reference about different standards, see Tab. 9a and Tab 9b. There is no perfect correspondence between different standards, due to the different test methods, but the tables can be used as general guide.

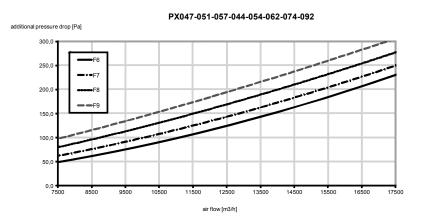

Filter section

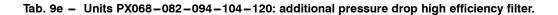
Tab. 9a - Comparison between air filter tests

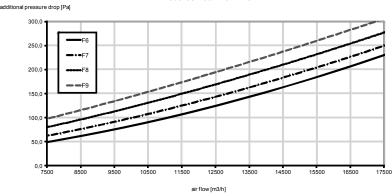
Eurovent 4/9 EN 779 EN 1882		Average Arrestance * [ASHRAE Standard 52.1 – 1992]		Average Dust Spot Efficiency ** [ASHRAE Standard 52.1–1992]		Minimum Efficiency Reporting Value	
	EN 1002	[greater then or equal to]	[less than]	[greater than or equal to]	[less than]	[ASHRAE 52.2–199]	
EU1	G1	60%	65%		20%	1-4	
EU2	G2	65%	80%	20%		4	
EU3	G3	80%	90%	20%		5	
EU4	G4	90%	95%	20%	30%	6-7-8	
EU5	F5	95%	98%	40%	60%	8-9-10	
EU6	F6	99%		60%	80%	10-11-12-13	
EU7	F7	99%		80%	90%	13-14	
EU8	F8	99%		90%	95%	14-15	
EU9	F9	99%		95%		15	


* Achieved filtering performance in accordance to gravimetric test method on a specific sample of dust.

** Achieved filtering performance in accordance to a light transmission test methods, with natural atmospheric dust.


Curves are approximation for general guidance only. Efficiency and arrestance per ASHRAE Std 52.1 test method [From ASHRAE Handbook, HVAC Systems and Equipment].




High efficiency filters additional pressure drop

Tab. 9c – Units PX041 – 045 – 059: additional pressure drop high efficiency filter.

Tab. 9d – Units PX047-051-057-044-054-062-074-092: additional pressure drop high efficiency filter.

PX068-082-094-104-120

iCOM Control

 ${\sf Liebert}^{{\sf I\!\!R}}$ PDX models are controlled by iCOM Large board.

The control handles the operation of the Liebert[®] PDX units with a special control algorithm, ensuring top reliability and maximum efficiency.

The iCOM Large board (main board) is housed in the electrical panel and it could be connected to a remote display (supplied on request), to be installed in the container/room.

• The 3 digit user interface is an inner display that permits an easy access to the unit parameters. Writing access is protected by a password. It features navigation push-buttons and status leds.

As optional is possible to have a large display that allows more functions and a more accurate monitoring (see paragraph CDL Graphic Display). Warnings and alarms activate a visual indicator and buzzer. All settings are protected through a 3-Level password system.

• Input for Remote unit On–Off and free contacts for simple remote monitoring of warnings and alarms are available.

Fig. 10.a

- LAN management: functions provided as standard include stand-by (in case of failure or overload of the unit in operation, the second one starts automatically), automatic rotation, and cascade (division of the load among several units, through split of the proportional band).
- Automatic restart is provided after a power failure.

Tab. 10a – Technical Data iCOM

Technical Data	iCOM Large		
E2prom	4Mbit + 512kbit		
Flash memory	32Mbit		
RAM memory	128Mbit		
Microcontroller	Coldfire 32Mbit		
Analogue Input	4 x 0-10V,0-5V,420mA (selectable) + 2 PTC/NTC + 2 NTC		
Digital Input	15 x opto-coupled		
Analogue Output	4 x 0–10V		
Digital Output	15 triacs output and 2 relay output		
Time and date	Buffered by an LI-battery		
Hirobus Lan connectors	2 RJ45 sockets (for unit in LAN, remote display)		
Ethernet network connectors	1 RJ45 socket		
CAN bus connectors	2 RJ12 sockets		
Hironet connectors	1 RJ9 socket for RS485 (direct connection to proprietary supervision)		
RS232 service port	1 db9 socket		

Microprocessor Controls

CDL Graphic Display (option)

Featuring up to 16 days record of controlled parameters as well as the last 400 events occurred.

- Large graphic display (320 x 240 pixel).
- System Window: system operation status at a glance.
- Self-explanatory lcons: they are used for the Menu-Layout of the CDL iCOM. There are 3 iCOM menus: user, service and advanced.
- Online Help: Every single parameter has its own multi-page explanation.
- Status Report of the latest 400 event-messages of the unit/system.
- Four different Graphic Data Records.
- Semi or Full Manual Mode software management including all safety devices.
- 3-Level Passwords system to protect all the settings.
- Ergonomic design for use also as portable device (start-up and "flying connections" by service personnel).
- Multi-language menu with on-the-fly language selection.

Technical Data CDL Graphic Display

- Microcontroller: Coldfire 32bit
- Time and date function buffered by LI—battery
- Ethernet network connectors 1 RJ45 sockets (for unit in LAN, remote display)
- CAN bus connectors 2 RJ12 sockets
- Power supply: via CAN bus or external 12Vdc supply

Microprocessor Controls

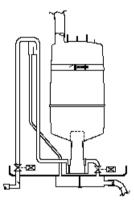
₽ 23.0°C 23.3°C ₽ 50.0%	Return air temperature. If on the top—right SYSTEM is indicated, it is the average of all units with system on. If UNIT x is indicated, it is the return air temperature of the specific unit. This is valid for all indications in the display. The small number represents the actual set point. If the "Cold Aisle" function is enabled the remote THB sensor temperature value is shown in place of the standard share return temperature. Specific Cold Aisle icons are shown.				
50.5 ^z	If the "Cold Aisle" functio	system / the unit and the set point. is enabled the remote THB sensor humidity value is shown in place irn humidity. Specific Cold Aisle icons are shown.			
⊡ 16.0°C פד 16.7°C הכד	Supply air temperature of the system / the unit and the supply limit set point. SET means set point ACT means actual reading				
* 60% 🚥		This bargraph gives information about the actual Fan speed. In units w/o Fan speed control the graph will show 100% if the fan is on, and 0% if the fan is off.			
🕀 0% 🖂		This bargraph gives information about the actual used cooling resources in operation, either for the system or for a specific unit.			
FC 88%		This bargraph gives information about the actual used Freecooling resources in operation, either for the system or for a specific unit.			
🕰 🛛 🖂 🗖		This bargraph gives information about the actual used heating resources (Hot Water) in operation, either for the system or for a specific unit.			
<u>≁</u> 0% 🖂		This bargraph gives information about the actual used heating resources (Electrical Heaters) in operation, either for the system or for a specific unit.			
🍄 0% 🖂		This bargraph gives information about the actual used dehumidification resources in operation, either for the system or for a specific unit.			
VVV 100% 🗰		This bargraph gives information about the actual used humidification resources in operation, either for the system or for a specific unit.			
)C 04/2011		This bargraph gives information about the next maintenance time (mm-yyyy).			
09.10.2011 14:07 09.10.2011 13:13 (01) 09.10.2011 13:12 (01)) MSG UNIT ON) MSG POWER ON	SYSTEM ON This field of the window informs about time, date, the status of the system / unit. It also contains an event log holding the 2 latest events occurred to the system / unit. (Large CF Display only).			

Liebert IntelliSlot[®] Web, 485, SiteLink—E, IPBML cards (Digit 19)

Liebert IntelliSlot[®] Web, 485, SiteLink–E, IPBML cards enable monitoring through Liebert Supervising SW tools (SiteScan, Nform) or a Building Management System. Plug and play solution cards that allow live data management, remote alarm notification and offer multiple connection options. Moreover provide for ease of integration with industry standard "open" protocol.

Alarm Board (accessory)

The Alarm Board converts Alarms (high priority) or Warnings (lower priority) from iCOM into Volt–free contacts. In this way, following Warnings/Alarms are separated: Humidifier Failure (if installed), High/Low room Temperature, High/Low room Humidity, Fan Failure, Clogged Filter alarm (if device installed), Water Leakage (if sensor installed). Alarm board is included for free in case Electronic Expansion Valve (selected on unit digit) and standard software. In fact iCOM can use the same board as double function for this application.


The **humidification system** is provided by an electronic controlled humidifier. The **dehumidification function**, which is supplied as standard when the humidifier option is installed, acts by reducing the fan speed with consequent reduction of the air flow and at the same time switching on the compressor(s).

Electronic humidity control

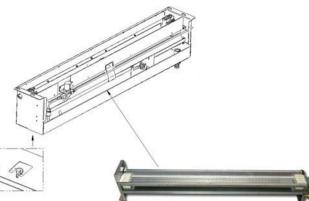
The software of the iCom Control microprocessor control includes an algorithm which manages the humidifier modulating and also provides the dehumidification function. There is also a special function which automatically prevents dehumidification if the return air temperature is below the required value. When the temperature reaches the correct value, the dehumidification function is automatically reactivated. Dehumidification control may be either of the proportional or of the on–off type, depending on the installation requirements: on–off is set as standard at the factory.

Electrode steam humidifier

The Electrode humidifier is a replaceable plastic water cylinder with immersed electrodes. When an electrical current passes between the electrodes, the water is converted into the required quantity of steam. It is suitable for a large range of water qualities (with varying degrees of hardness) with the exception of demineralized water. It almost instantaneously produces clean, particle–free steam and avoids energy losses which are typical of other systems. The humidifier is provided with the steam cylinder, water inlet and outlet valves and a maximum level sensor. The steam output can be adjusted within a range of values which can be chosen manually and is factory–set at 50% of the maximum capacity (see the relevant data in Tab. 11a).

Electrode humidifier features

The steam is mixed with the delivery air of the evaporating coil by means of a suitable distributor. The iCom Control controller can determine when the cylinder has to be changed. Replacing the cylinder is extremely easy and quick. A self–adaptive flow control system is fitted as standard and controls the current passing through the cylinder water.


Tab. 11a - Humidair specifications

MAIN POWER SUPPLIES (V ± 10%)	SETTING	ABSORBED CURRENT	POWER	MAX. CYLINDER WATER VOLUME	MAX. SUPPLY WATER QUANTITY	MAX. DRAIN WATER QUANTITY
	[kg/h] *	[A]	[kW]	[1]	[l/min.]	[l/min.]
400V / 3ph / 50Hz	z 2.713.0	13.0	9.0	5.5	0.6	10.0

For humidifier current (FLA) and rated power refer to electrical features in air conditioner manual. (*) Unit is factory-set to produce about 50% of the maximum value (see iCom Control manual).

Infrared humidifier

The infrared humidifier design consists of quartz lamps mounted above a stainless steel water reservoir. The lamps never come in contact with the water. When humidification of room air is required, infrared rays generate water vapor—without impurities or odor, within seconds.

Infrared humidifier features

The steam is mixed with the delivery air of the cooling coil by means of a suitable distributor.

During normal humidifier operation, deposits of mineral solids will collect in the humidifier pan and on the float switch. These must be cleaned periodically to ensure proper operation. Frequency of cleaning must be locally established because it depends on humidifier usage and local water quality. A spare pan is recommended to reduce maintenance time at unit. The Liebert autoflush system can greatly increase the time between cleanings, but does not eliminate the need for periodic checks and maintenance.

Tab. 11b - Infrared Humidifier specifications

Humidifier Model	PAN	MAIN POWER SUPPLIES (V ± 10%)	NOMINAL CAPACITY [kg/h]	ABSORBED CURRENT [A]	POWER INPUT [kW]
PX041-045-059	Stainless steel Acciaio inossidabile	400V / 3ph / 50Hz	5	6.4	4.8
PX047120	Stainless steel Acciaio inossidabile	400V / 3ph / 50Hz	10	13.9	9.6

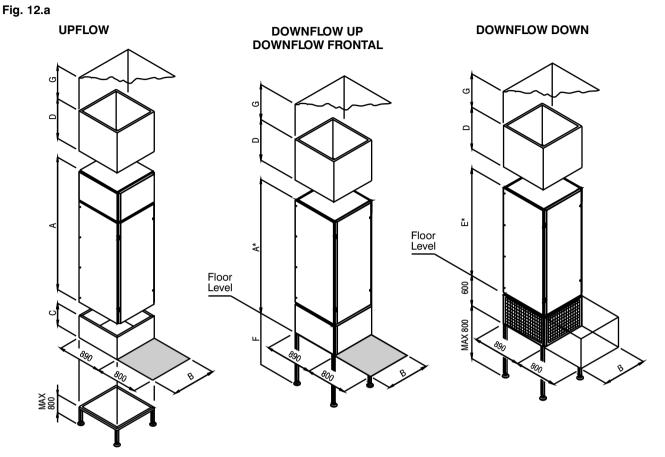
Ultrasonic humidifier

Ultrasonic humidifier operates on the principle of ultrasonic nebulization.

The mist generated in the water tank by means of the transducer is blown into the room by the built-in fan. Ultrasonic Humidifier can work only with demineralized water with conductivity < 5 μ S/cm (up to 20 μ S/cm for a short time).

Ultrasonic humidifier features

The Ultrasonic humidifier is supplied mounted within one base module 400 mm heigh stand alone, to connect on the field with the air conditioner.


The module can be installed on the raised floor or in the raised floor.

The humidifier consists of nebulization modules, solenoid valve for the control of the supply water, float switch and a case that houses the fan.

Tab. 11c - Ultrasonic Humidifier specifications

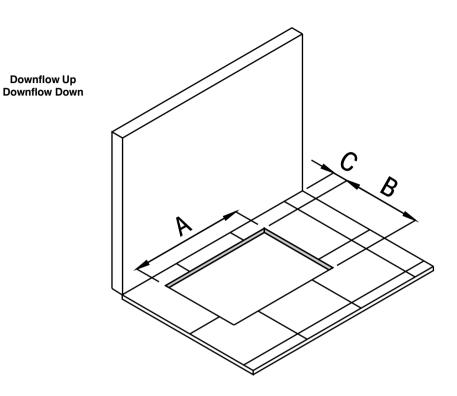
Humidifier Model	POWER SUPPLIES (Vac)	[kg/h]	NUMBER OF TRANSDUCERS	[W]
HSU08RM000	48	06.0	16	670

Overall dimensions and service area

Tab. 12a - Overall dimensions - Service area (referring to Fig. 12.a)

		Unit Upflow			AVAILABLE	PLENUM HE	Options IGHTS: D [mr	n]														
Models	B [mm]	Downflow Up Downflow Frontal A* [mm]	Downflow Down E* [mm]	Plenum	Plenum for silencing cartridges	Plenum for high efficiency filters	Plenum with frontal airflow (Upflow)	Air Economizer	Base Modules C [mm]													
PX041	1200																					
PX045	1200																					
PX047		1																				
PX051]																					
PX057									200													
PX044	1750								Base Module													
PX054		1970*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	1370*	500 000					(Base Module with	
PX062																1070	10/0	10/0	10/0		500-600- 700-800	600-900
PX074												900					,					
PX068									600													
PX082									(Base Module with													
PX094	2550								rear air intake)													
PX104																						
PX120																						
PX059	1200	2570*	1970*																			
PX092	1750																					

F (free space between unit bottom and basement):


max. 800 mm (base frame/legs kit availability) min. 600mm (to get declared performances) min. 300mm (minimum working conditions)

G (free space between ceiling and unit top or plenum top if installed):

i (free space between ceiling and unit top or plenum top if installed): In Downflow Up, Downflow Frontal, Downflow Down units with predisposition for damper, economizer and plenum installation (digit 18=S, F, G, H or L) the unit is shipped with a connecting flange 50 mm high fixed on the unit top, so the unit is 50 mm higher. If required, the flange can be removed by unscrewing the fixing screws (removing the side panel to access the screws head) and repositioned later (see Chap. 14). *

Hole in the floor for Downflow versions.

Fig. 12.b

Tab. 12b – Hole in the floor for Downflow units, dimensions in mm.

Configuration	Unit		PX041 PX045 PX059	PX047 PX051 PX057 PX044 PX054 PX062 PX074 PX092	PX068 PX082 PX094 PX104 PX120
		Α	1100	1650	2450
	-	В	760	760	760
	-	C*	70	70	70
		Α	1176	1726	2526
Downflow Up	With Base Frame	В	840	840	840
	-	C*	30	30	30
		Α	1156	1706	2506
	With Legs kit **	В	820	820	820
	-	C*	30	30	30
		Α	1182	1732	2532
	-	В	846	846	846
Downflow Down	-	C*	20	20	20
Downliow Down		Α	1220	1770	2570
	With floor tiles support kit **	В	885	885	885
	Support Kit	C*	50	50	50

Minimal distance of the working unit from the back wall. Caution: In order to assemble and/or install accessories, a larger distance might be required. In that case, the unit can be moved in the working position after installation / assembly procedures. Optional accessories – see details in Chap. 14

**

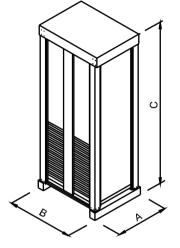
Units Weight

Tab. 12c - Units weight

MODELS	A [kg]	W [kg]	F [kg]	D [kg]	H [kg]	Packaging (kg)
Standard Height un	it		1	1		
PX041	452	466	521	507	521	23
PX045	456	470				23
PX047	620 (635)	635 (650)	727 (742)	712 (727)	727 (742)	28
PX051	621 (637)	636 (652)	728 (744)	713 (697)	728 (744)	28
PX057	675	692				28
PX044	638	657	747	725	744	28
PX054	642	663	751	727	748	28
PX062	680	703	790	764	787	28
PX074	680	706				28
PX068	887	910	1006	971	1001	42
PX082	891 (931)	920 (960)	1010 (1050)	975 (1015)	1005 (1045)	42
PX094	899 (929)	928 (958)	1022 (1052)	987 (1017)	1017 (1047)	42
PX104	901 (931)	930 (963)	1024 (1057)	989 (1022)	1019 (1052)	42
PX120	954	989				42
Extended Height un	it [Coil Mod	ule] (1)				
PX059	461	478				23
PX092	576	605				28
Extended Height uni	t [Fan Base	Frame] (1)		I		
BF121	-	,	91			26
BF176			150			35
Extended Height uni	t [Fan Base	Module / F	an Top Plen	um] (1)		
BM/ TP 121	-		132	/		26
BM/ TP 176			200			35

Note:

Note:
Data above refer to standard units without any option. Data in brackets refer to Digital Scroll Compressor
Cooling System, when the data differs.
(1) For Extended Height total unit weight must be calculated summing the Coil Module weight and Fan Section weight.


Packing

The air conditioners are packed on a wooden pallet (1), with shockproof angle pieces from pressed cardboard (2, 3, 4, 5), panels in cardboard (6, 7) and flexible polythene film (8). Base frames are packed on a wooden pallet (1), with a panel in cardboard (6) and a protective wooden structure (9).

Special packing (options)

Special packing for sea transport, consisting of a wooden box or crate, can be supplied on request.

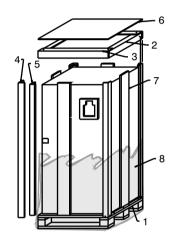
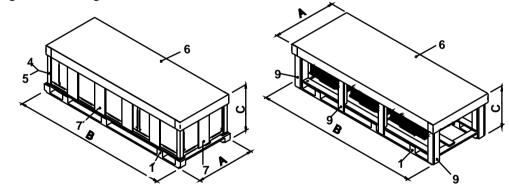



Fig. 12.d Packing of fan module

Tab. 12d – Packing dimensions

Standard Height Unit	Extended Height Unit [Coil Module]	A [mm]	B[mm]	C[mm]
PX041 PX045	PX059	960	1280	2170
PX047 PX051 PX057 PX044 PX054 PX062 PX074	PX092	960	1830	2170
PX068 PX082 PX094 PX104 PX120	-	960	2630	2170
	Extended Height Unit [Fan Module]	A [mm]	B[mm]	C[mm]
	BM/ TP/BF121	960	1280	800
	BM/ TP/BF176	960	1830	800

Hydraulic and electrical connections – Downflow version

Tab. 12e - Refrigerant , hydraulic and electrical connections

	Model			PX041			PX	045	PX	059
U	nit Connection	Α	w	F	D	н	Α	w	Α	w
IL1	Refrigerant liquid line inlet 1*	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm		O.D. Ø18 mm	
IL2	Refrigerant liquid line inlet 2*									
OG1	Refrigerant gas line outtlet 1*	0.D. Ø22 mm			0.D. Ø22 mm		0.D. Ø22 mm		0.D. Ø22 mm	
OG2	Refrigerant gas line outlet 2 *									
IWC1	Water to condenser 1 inlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
IWC2	Water to condenser 2 inlet									
OWC1	Water to condenser 1 outlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
OWC2	Water to condenser 2 outlet									
IHW	Hot water inlet					OD 22 mm				
OHW	Hot water outlet					OD 22 mm				
IFC	Water inlet (Freecooling and dual fluid)				Rp 1 1/4 ISO 7/	1				
OFC	Water outlet (Freecooling and dual fluid)				Rp 1 1/4 ISO 7/	1				
CD	Condensate drain			1		I.D. Ø20 [mm]				
HF1	Humidifier feed				R ½ - ISO	7/1 (Electrode	Humidifier)			
HF2	Humidifier feed					lumidifier)				
HD1	Humidifier drain		I.D. Ø32 [mm] (Electrode Humidifi							
HD2	Humidifier drain		I.D. Ø22 [mm] (Infrared Humidifier)							
EC	Electrical power supply		Ø 48 [mm							
EC aux	Low voltage cables				1	Ø 40 - Ø 36 [mr	n]			

	Model			PX047								PXC)57
Unit	t Connection	Α	w	F	D	н	Α	w	F	D	н	Α	w
IL1	Refrigerant liquid line inlet 1*	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm	
IL2	Refrigerant liquid line inlet 2*												
OG1	Refrigerant gas line outtlet 1*	0.D. Ø22 mm			O.D. Ø22 mm		O.D. Ø22 mm			0.D. Ø22 mm		O.D. Ø22 mm	
OG2	Refrigerant gas line outlet 2 *												
IWC1	Water to condenser 1 inlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
IWC2	Water to condenser 2 inlet												
OWC1	Water to condenser 1 outlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
OWC2	Water to condenser 2 outlet												
IHW	Hot water inlet						OD 2	2 mm					
OHW	Hot water outlet						OD 2	2 mm					
IFC	Water inlet (Freecooling and dual fluid)			F	Rp 1 ½ ISO 7	/1			l	Rp 1 ½ ISO 7	/1		
OFC	Water outlet (Freecooling and dual fluid)			F	Rp 1 1/2 ISO 7	/1			l	Rp 1 ½ ISO 7	/1		
CD	Condensate drain		I				I.D. Ø2	0 [mm]					
HF	Humidifier feed				R ½ - ISO	7/1 (Electro	de Humidifier), O.D. 6 [mr	m] (Infrared	d Humidifier)			
HD	Humidifier drain				I.D. Ø32 [m	m] (Electroc	le Humidifier)	, I.D. Ø22 [m	nm] (Infrare	ed Humidifier)			
EC	Electrical power supply						Ø 48	[mm]					
EC aux	Low voltage cables						Ø 40 - Ø	36 [mm]					

* Connection size only. The connecting pipe diameter depends on unit model, see Tab.d in par. 5.1.2 (User Manual) ** VICTAULIC[®] Connection. *** Optional. Threaded union on request

	Model		F	X044				-	PX054	1				PX062		
Unit	Connection	Α	w	F	D	н	Α	w	F	D	н	Α	w	F	D	н
IL1	Refrigerant liquid line inlet 1*	O.D. Ø18 mm			0.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		0.D. Ø18 mm			O.D. Ø18 mm	
IL2	Refrigerant liquid line inlet 2*	O.D. Ø18 mm			O.D. Ø18 mm		0.D. Ø18 mm			0.D. Ø18 mm		0.D. Ø18 mm			O.D. Ø18 mm	
OG1	Refrigerant gas line outtlet 1*	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		0.D. Ø18 mm			O.D. Ø18 mm	
OG2	Refrigerant gas line outlet 2 *	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm	
IWC1	Water to condenser 1 inlet		Rp 1 ¼ ISO 7/1			Rp1 ¼ SO 7/1		Rp1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ½ ISO 7/
IWC2	Water to condenser 2 inlet		Rp1 ¼ ISO 7/1			Rp1 ¼ SO 7/1		Rp1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ½ ISO 7/
OWC1	Water to condenser 1 outlet		Rp1 ¼ ISO 7/1			Rp1 ¼ SO 7/1		Rp1 ¼ ISO 7/1			Rp1 ¼ ISO 7/1		Rp1 ¼ ISO 7/1			Rp1 ½ ISO 7/
OWC2	Water to condenser 2 outlet		Rp1 ¼ ISO 7/1			Rp1 ¼ SO 7/1		Rp1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp1 ½ ISO 7/*
IHW	Hot water inlet								OD 22 m							
OHW IFC	Hot water outlet Water inlet (Freecooling and dual fluid)			Rp 1	1½ ISO 7	/1			OD 22 m F	1m Rp1½ K	SO 7/1			R	p1½ IS0	D 7/1
OFC	Water outlet (Freecooling and dual fluid)			Rp 1	1/2 ISO 7	/1			F	Rp 1 ½ K	SO 7/1			R	p1½ IS0	D 7/1
CD	Condensate	I						I.	D. Ø20 [r	nml						
HF	drain Humidifier feed					3 ¼ - ISO	7/1 (Ele			-	n] (Infrared	Humidifie	r)			
HD	Humidifier drain										nm] (Infrared		,			
EC	Electrical power								Ø 48 [mr							
50	supply								•	-						
EC								~								
EC aux	Low voltage cables							Ø	10 - Ø 36	[mm]						
		P	X074	F	X092				10 - Ø 36 X068	[mm]				PX082		
aux	cables	P	X074 W	P A	2X092 W	A	A			[mm] D	н	Α	w	PX082 F	D	н
aux	cables Model					0. Ø ⁻ m	D. 18	P	X068		н	A O.D. Ø18 mm	w		D O.D. Ø18 mm	H
^{aux} Uni	cables Model t Connection Refrigerant liquid	A 0.D. Ø18		A O.D. Ø18		0. Ø	D. 18 m D. 18	P	X068	D O.D. Ø18	н	0.D. Ø18	W		0.D. Ø18	H
ux Uni IL1	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant liguid	A O.D. Ø18 mm O.D. Ø18		A O.D. Ø18 mm O.D. Ø18		0. Ø* m 0. Ø*	D. 18 m D. 18 m D. 18	P	X068	D O.D. Ø18 mm O.D. Ø18	Н	0.D. Ø18 mm 0.D. Ø18	W		0.D. Ø18 mm 0.D. Ø18	H
aux Uni IL1 IL2	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22		A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22		0. Ø' m 0. Ø' m 0. Ø	D. 18 m D. 18 m D. 18 m D. 18 D. 18	P	X068	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18	н	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22	W		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22	H
uni IL1 IL2 OG1	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant gas line outllet 1* Refrigerant gas	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22		A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22		0. Ø m 0. Ø m 0. Ø m 0. Ø m m 4	D. 18 m D. 18 m D. 18 m D. 18 m F	P	X068	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18	H Rp1 ¼ ISO 7/1	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	W Rp1 ½ ISO 7/1		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ½
ux Uni IL1 IL2 OG1 OG2	cables Model Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas line outllet 1* Refrigerant gas line outlet 2 * Water to condenser 1 inlet Water to condenser 2 inlet	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	8p1 ¼	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1	0. 0'''''''''''''''''''''''''''''''''''	D. 18 m D. 18 m D. 18 m D. 18 m F IS F F	P. W	X068	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18	Rp1 ¼	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ½		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ½ ISO 7/
uux Unii IL1 IL2 OG1 OG2 IWC1	cables Model Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas line outtlet 1* Refrigerant gas line outtlet 2* Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 1 outlet	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ISO 7 Rp1	0. 0' 0' 0' 0' 0' 0' 0' 0' 0' 0'	D. 18 m D. 18 m D. 18 m D. 18 m F IS F IS F IS	P W 2011 2011 2011 2011 2011 2011 2011 20	X068	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18	Rp1 ¼ ISO 7/1 Rp1 ¼	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	H Rp1 ½ ISO 7/ Rp1 ½ ISO 7/ Rp1 ½ ISO 7/
ux Uni IL1 IL2 OG1 IWC1 IWC2 OWC1 OWC2	cables Model Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 outlet Water to condenser 1 outlet 1 Water to condenser 2 inlet Water to condenser 2 outlet 2 Water to 2 condenser 2 outlet 2 Condenser 2 condenser 2 condenser 2 condenser 2 condenser 2 condenser 2 condenser	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ISO 7 Rp1 ISO 7 Rp1	O. Ø' m m O. Ø' m m Ø' m Ø' m Ø' m Ø' m A A A A A	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F I8 F I8 F F I8 F F F F F F F F F	P W kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼ kp1 ¼	X068 F	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ½ ISO 7/ Rp1 ½ ISO 7/ Rp1 ½
uv Uni IL1 IL2 OG1 IWC1 IWC2 OWC1 OWC2 IHW	cables Model Connection Refrigerant liquid line inlet 1* Refrigerant gas line outlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 2 outlet 2 Water to condenser 2 inlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water inlet	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	O. Ø' m m O. Ø' m m Ø' m Ø' m Ø' m Ø' m A A A A A	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F I8 F I8 F F I8 F F F F F F F F F	P W kp1 ¼ kp1 ¼	X068 F	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼		O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ½ ISO 7/ Rp1 ½ ISO 7/ Rp1 ½ ISO 7/ Rp1 ½
Uni IL1 IL2 OG1 IWC1 IWC2 OWC1 OWC2	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant gas line outlet 2* Refrigerant gas line outlet 2 * Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water inlet Hot water outlet	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	O. Ø' m m O. Ø' m m Ø' m Ø' m Ø' m Ø' m A A A A A	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F I8 F I8 F F I8 F F F F F F F F F	P W kp1 ¼ kp1 ¼	X068 F	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 3 ISO 7/ Rp1 3 ISO 7/ ISO 7/ ISO 7/ ISO 7/ ISO 7/
Uni IL1 IL2 OG1 IWC1 IWC2 DWC1 DWC2 IHW	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 Water to condenser 2 inlet Water to condenser 2 outlet Hot water inlet Hot water outlet Water inlet Hot water outlet Water inlet (Freecooling and dual fluid)	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	O. Ø' m m O. Ø' m m Ø' m Ø' m Ø' m Ø' m A A A A A	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F I8 F I8 F F I8 F F F F F F F F F	P W kp1 ¼ kp1 ¼	X068 F	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm Solo Solo Solo Solo Solo Solo Solo S	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 ***	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 3 ISO 7, Rp1 3 ISO 7, Rp1 3 ISO 7, Rp1 3 ISO 7, ISO 7, ISO 7,
aux Uni IL1 IL2 OG1 OG2 IWC1 IWC2 DWC1 DWC2 IHW OHW IFC OFC	cables Model Connection Refrigerant liquid line inlet 1* Refrigerant grant liquid line outlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water inlet Hot water outlet Water outlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water inlet (Freecoling and dual fluid) Water outlet	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	O. Ø' m m O. Ø' m m Ø' m Ø' m Ø' m Ø' m A A A A A	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F I8 F I8 F F I8 F F F F F F F F F	P W 307/1 307/1 307/1 307/1 307/1 307/1 307/1 307/1	X068 F	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm . 54 mm ⁴ ISO 7/1 ⁴	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	0.D. Ø18 mm 0.D. Ø18 mm 0.D. Ø22 mm 0.D. Ø22	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7
aux Uni IL1 IL2 OG1 IWC1 IWC2 OWC1 OWC2 IHW OHW IFC	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant liquid line inlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 water to condenser 2 inlet Water to condenser 2 unlet Water to condenser 1 water to condenser 2 unlet Water outlet (Freecooling and Water coultet (Freecooling and Condenser 2 Neter Coultet (Freecooling and Condenser 2 Coultet (Freecooling and Condenser 2 Coultet (Freecooling and Condenser 2 Coultet (Freecooling and Condenser 2 Coultet Condenser 2 Coultet (Freecooling and Coultet Condenser 2 Coultet Condenser 2 Coultet Coul	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	0. 0'''''''''''''''''''''''''''''''''''	D. 18 m D. 18 m D. 18 m D. 18 m F I5 F	P W -	X068 F OD 22 OD 22 OD 22 OD 22 OD 22 OD 22 OD 22 OD 22 OD 22 OD 22	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm Solore Solore Solore Solore Solore Solore Solore Solore Missione Solore Missione Solore Missione Missione Solore Missione Solore Missione Solore Missione Solore Missione Solore Missione Solore Missione Solore Missione Solore Missione Missione Solore Missione Missione Solore Missione	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm O.D. Ø22 mm 2. ISO 7/1 D. 54 mm	Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7
aux Uni IL1 IL2 OG1 OG2 IWC1 IWC2 OWC1 OWC1 OWC2 IHW OHW IFC OFC CD	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant siquid line inlet 2* Refrigerant gas line outlet 1* Refrigerant gas line outlet 2 * Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 2 outlet Water to condenser 2 inlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water inlet Hot water inlet Water outlet Water outlet (Freecooling and dual fluid) Condensate drain	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	C. Ø' m Ø' m Ø' m Ø' m M 4 (1 4 (1 4 4 (1 4 4 (1 1 4 4 (1 1 8 (1) 7 8 (1) 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F	P W kp1 ¼ kp1 µ kp1 µ kp	X068 F OD 22 OD 2 OD 2	D O.D. Ø18 mm O.D. Ø18 MM O.D. Ø18 MM O.D. Ø18 O.D. Ø18 O.D. Ø18 O.D. Ø18 O.D. Ø19 O.D. Ø19 O.D. Ø10 Ø10 O.D. Ø10 O.D. Ø10 Ø10 O.D. Ø10 Ø10 O.D. Ø10 Ø10 Ø10 Ø10 Ø10 Ø10 Ø10 Ø10 Ø10 Ø10	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm O.D. Ø22 mm 2. ISO 7/1 D. 54 mm	Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7 Rp1 1 ISO 7
Uni IL1 IL2 OG1 IWC1 IWC2 IWC1 IWC2 IHW OHW IFC OFC CD HF	cables Model t Connection Refrigerant liquid line inlet 1* Refrigerant gas line outliet 2* Refrigerant gas line outliet 2* Refrigerant gas line outliet 2* Water to condenser 1 inlet Water to condenser 2 inlet Water to condenser 1 outlet Water to condenser 2 outlet Hot water inlet Hot water outlet Water to condenser 2 outlet Hot water inlet Hot water outlet Water to condenser 2 outlet Water to condenser 2 outlet Hot water outlet Water outlet Water to condenser 4 Condenser 4 Water outlet Water outlet Water outlet (Freecooling and dual fluid) Condensate drain Humidifier feed	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	W Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	A O.D. Ø18 mm O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22	Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7	C. Ø' m Ø' m Ø' m Ø' m M 4 (1 4 (1 4 4 (1 4 4 (1 1 4 4 (1 1 8 (1) 7 8 (1) 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	D. 18 m D. 18 m D. 18 m D. 18 m F I8 F	P W - Image: Second Sec	X068 F OD 22 OD 2 OD 2	D O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm O.D. Ø18 mm Solo Solo Solo Solo Solo Solo Solo S	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm	Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1 Rp1 ¼ ISO 7/1	F	O.D. Ø18 mm O.D. Ø22 mm O.D. Ø22 mm O.D. Ø22 mm 2. ISO 7/1 D. 54 mm	Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7 Rp1 ISO 7

* Connection size only. The connecting pipe diameter depends on unit model, see Tab.d in par. 5.1.2 (User Manual) ** VICTAULIC[®] Connection. *** Optional. Threaded union on request

	Model			PX094					PX104			PX	120
Uni	t Connection	Α	w	F	D	н	Α	w	F	D	н	Α	w
IL1	Refrigerant liquid line inlet 1*	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm	
IL2	Refrigerant liquid line inlet 2*	O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm			O.D. Ø18 mm		O.D. Ø18 mm	
OG1	Refrigerant gas line outtlet 1*	O.D. Ø22 mm			0.D. Ø22 mm		0.D. Ø22 mm			0.D. Ø22 mm		0.D. Ø22 mm	
OG2	Refrigerant gas line outlet 2 *	O.D. Ø22 mm			0.D. Ø22 mm		O.D. Ø22 mm			0.D. Ø22 mm		O.D. Ø28 mm	
IWC1	Water to condenser 1 inlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
IWC2	Water to condenser 2 inlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
OWC1	Water to condenser 1 outlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
OWC2	Water to condenser 2 outlet		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1			Rp 1 ¼ ISO 7/1		Rp 1 ¼ ISO 7/1
IHW	Hot water inlet						OD 2	2 mm					
OHW	Hot water outlet						OD 2	2 mm					
IFC	Water inlet (Freecooling and dual fluid)				O.D. 54 mm* ? 2 - ISO 7/1*					O.D. 54 mm* R 2 - ISO 7/1*			
OFC	Water outlet (Freecooling and dual fluid)				O.D. 54 mm* 3 2 - ISO 7/1*					0.D. 54 mm* R 2 - ISO 7/1*			
CD	Condensate drain						I.D. Ø2	0 [mm]					
HF	Humidifier feed				R ½ - ISO	7/1 (Electro	de Humidifier	r), O.D. 6 [m	m] (Infrared	Humidifier)			
HD	Humidifier drain				I.D. Ø32 [m	m] (Electroc	le Humidifier)), I.D. Ø22 [r	nm] (Infrare	ed Humidifier)			
EC	Electrical power supply						Ø 48	[mm]					
EC aux	Low voltage cables						Ø 40 - Ø	36 [mm]					

* Connection size only. The connecting pipe diameter depends on unit model, see Tab.d in par. 5.1.2 (User Manual) ** VICTAULIC[®] Connection. *** Optional. Threaded union on request

Fig. 12.e Refrigerant, water and electrical connections PX041-045-059 A-W, top view

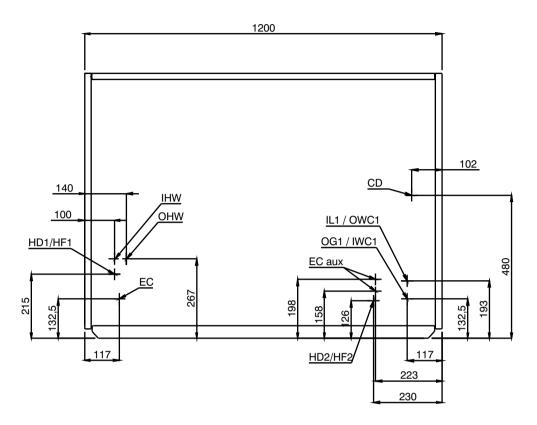


Fig. 12.f Refrigerant, water and electrical connections PX041 F-H-D, top view

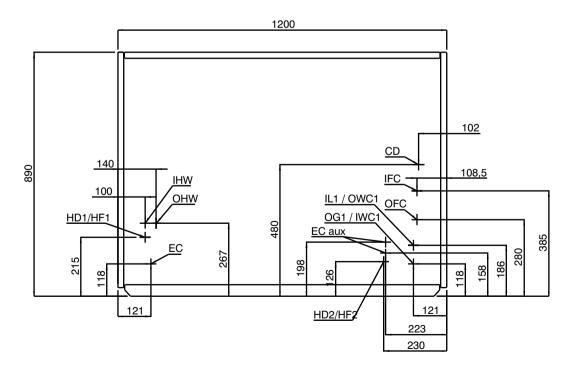


Fig. 12.g Refrigerant, water and electrical connections PX047-051-057-044-054-062-074-092 A-D, top view

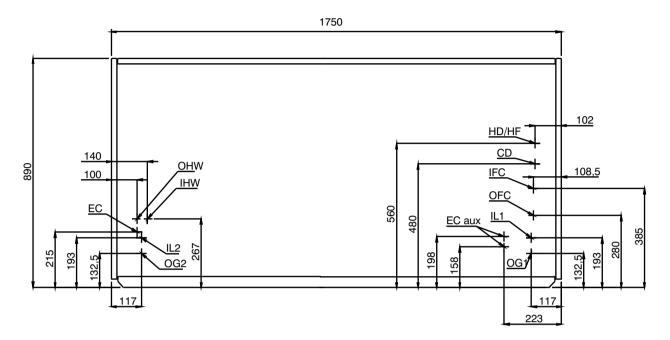
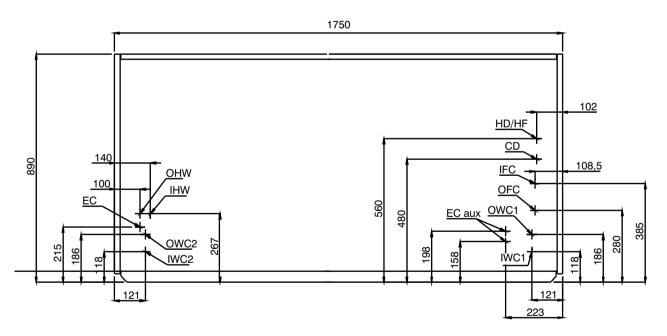



Fig. 12.h Refrigerant, water and electrical connections PX047-051-057-044-054-062-074-092 W-F-H, top view

Liebert PDX - PD - 265200 - 29.07.2013

Fig. 12.i Refrigerant, water and electrical connections PX068-082-094-104-120 A-D, top view

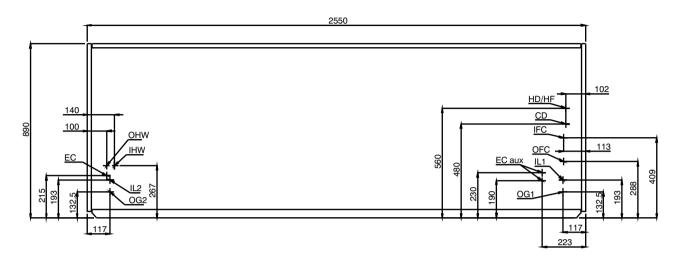
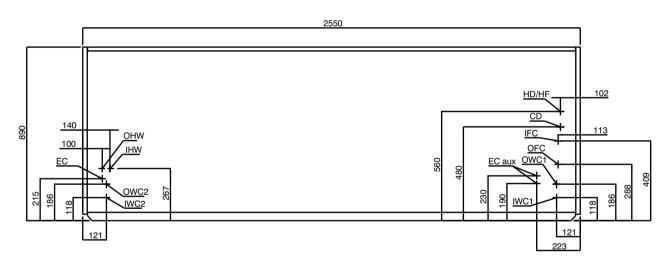



Fig. 12.j Refrigerant, water and electrical connections PX068-082-094-104-120 W-F-H, top view

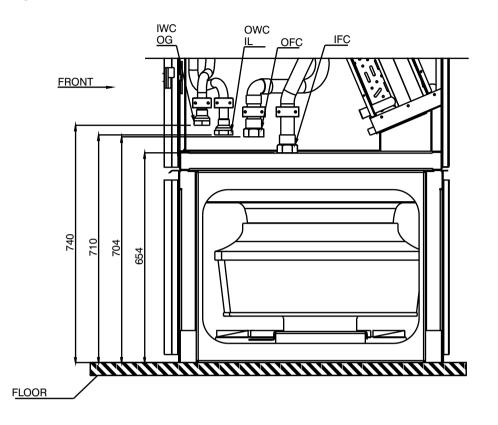
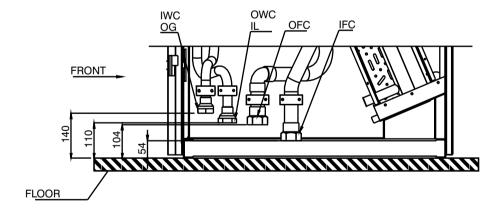
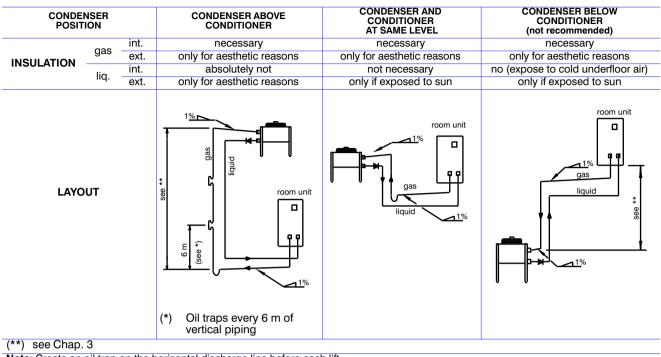



Fig. 12.k Refrigerant and water connections PX041-120 Downflow, side view

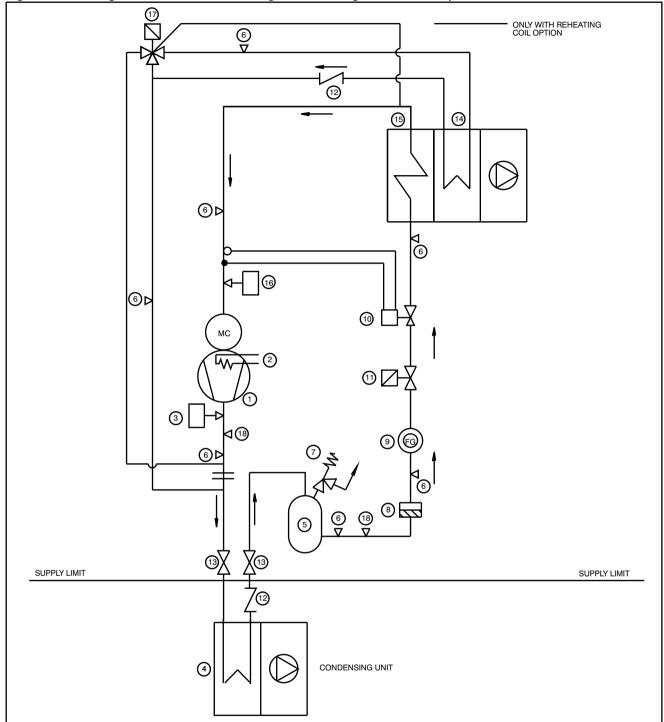
Fig. 12.1 Refrigerant and water connections PX041-120 Upflow, side view


Tab. 12f - Pipe diameters (room unit - remote condenser)

STANDARD PIPE DIAMETERS (Valid for equivalent lengths up to 100 m)									
MOD.	copper tube external diametre x thickness [mm] R410A								
	Gas	Liquid							
PX041	22 x 1.5	18 x 1							
PX045	28 x 1.5	22 x 1.5							
PX059	28 x 1.5	22 x 1.5							
PX047	28 x 1.5	22 x 1.5							
PX051	28 x 1.5	22 x 1.5							
PX057	28 x 1.5	22 x 1.5							
PX044	18 x 1	16 x 1							
PX054	22 x 1.5	16 x 1							
PX062	22 x 1.5	18 x 1							
PX074	22 x 1.5	18 x 1							
PX092	28 x 1.5	22 x 1.5							
PX068	22 x 1.5	18 x 1							
PX082	22 x 1.5	18 x 1							
PX094	28 x 1.5	22 x 1.5							
PX104	28 x 1.5	22 x 1.5							
PX120	28 x 1.5	22 x 1.5							

Tab. 12g - Equivalent lengths (m) of: curves, shut-off and non-return valves

120.500.250.752.101.90140.530.260.802.202.00160.550.270.852.402.10180.600.300.952.702.40220.700.351.103.202.80280.800.451.304.003.30	Nominal diameter (mm)	90°	45°	180°	90°	
160.550.270.852.402.10180.600.300.952.702.40220.700.351.103.202.80	12	0.50	0.25	0.75	2.10	1.90
180.600.300.952.702.40220.700.351.103.202.80	14	0.53	0.26	0.80	2.20	2.00
22 0.70 0.35 1.10 3.20 2.80	16	0.55	0.27	0.85	2.40	2.10
	18	0.60	0.30	0.95	2.70	2.40
28 0.80 0.45 1.30 4.00 3.30	22	0.70	0.35	1.10	3.20	2.80
	28	0.80	0.45	1.30	4.00	3.30


Tab. 12h – Condenser positioning

Note: Create an oil trap on the horizontal discharge line before each lift. Check the manufacturer's indication for the non-return valve orientation and position.

Fig. 13.1 - Refrigerant circuit A version - Single circuit - Single SCROLL compressor - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass

POS.	DESCRIPTION
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4

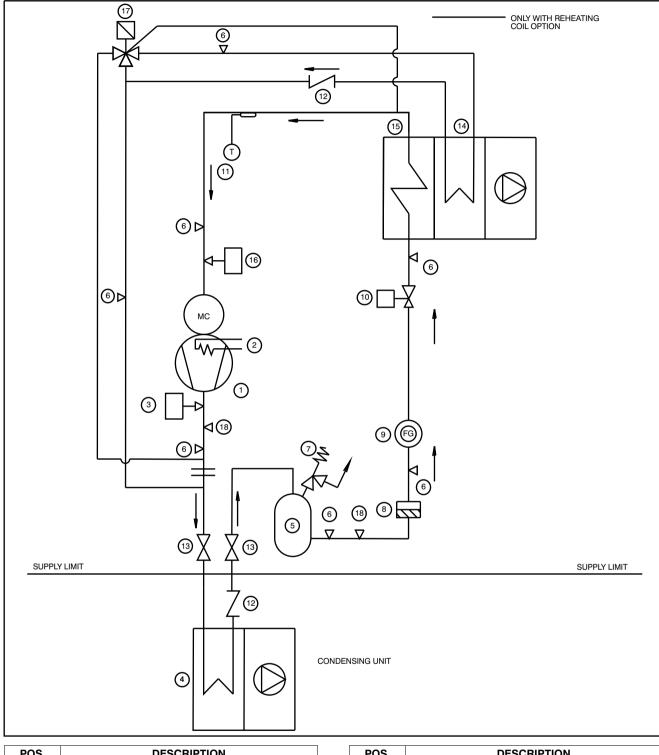


Fig. 13.2 - Refrigerant circuit A version - Single circuit - Single SCROLL compressor - EEV

1 Compressor 2 Crankcase heater 3 High pressure switch (HP) 4 Air cooled condenser 5 Liquid receiver 6 Access valve 5/16 7 Safety valve 8 Filter dryer 9 Sight glass	POS.	DESCRIPTION
3 High pressure switch (HP) 4 Air cooled condenser 5 Liquid receiver 6 Access valve 5/16 7 Safety valve 8 Filter dryer	1	Compressor
4 Air cooled condenser 5 Liquid receiver 6 Access valve 5/16 7 Safety valve 8 Filter dryer	2	Crankcase heater
5 Liquid receiver 6 Access valve 5/16 7 Safety valve 8 Filter dryer	3	High pressure switch (HP)
6 Access valve 5/16 7 Safety valve 8 Filter dryer	4	Air cooled condenser
7 Safety valve 8 Filter dryer	5	Liquid receiver
8 Filter dryer	6	Access valve 5/16
	7	Safety valve
9 Sight glass	8	Filter dryer
	9	Sight glass

POS.	DESCRIPTION
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4

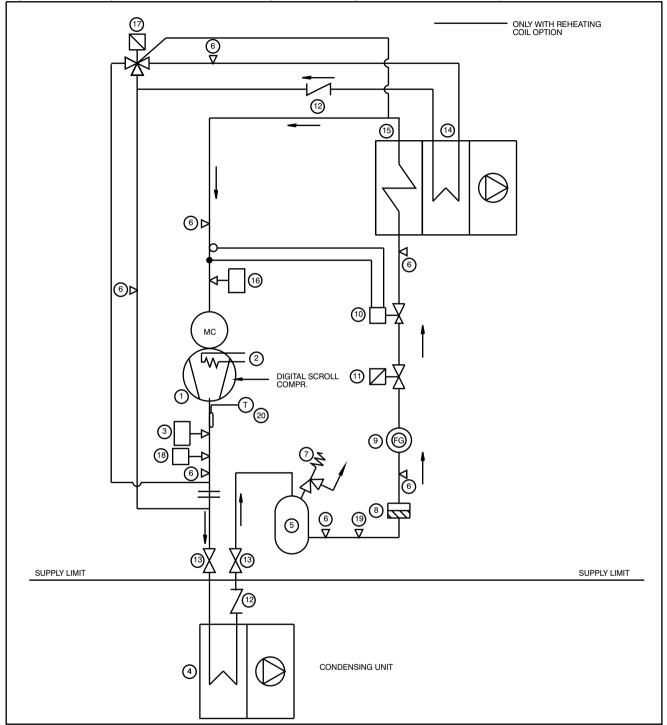
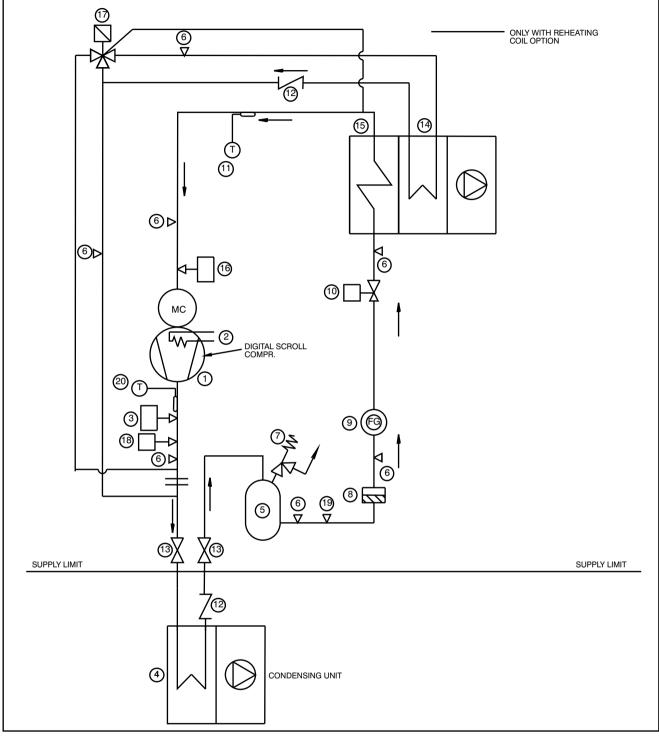



Fig. 13.3 – Refrigerant circuit A version - Single circuit - Single DIGITAL SCROLL compressor - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve

POS.	DESCRIPTION
11	Shut-off solenoid valve
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	NTC Temperature sensor for DIGITAL SCROLL compressor

Fig. 13.4 – Refrigerant circuit A version - Single circuit - Single DIGITAL SCROLL compressor - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)

POS.	DESCRIPTION
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	NTC Temperature sensor for DIGITAL SCROLL compressor


ONLY WITH REHEATING COIL OPTION 6 ⊽ (12) (14) (15) 6⊳ **6**⊳ 16 4 ⊲ ⊚ TANDEM мс МС 2 2 \mathbb{N} \mathbb{M} (1)(1)SCROLL COMPR. 3 SCROLL COMPR. (19) 9 (FG ি⊳⊳ 8 6) ⊽ 5 Ž13 (13) Δ (18) SUPPLY LIMIT SUPPLY LIMIT (12) CONDENSING UNIT 4

Fia	125 -	Refrigerant circuit A version - Single circuit - Tandem SCROLL compressors - EEV	
гіу.	13.5 -	Reingerant circuit & version - Single circuit - Tandem SCROLL compressors - ELV	

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)

POS.	DESCRIPTION
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	High pressure transducer

Fig. 13.6 – Refrigerant circuit A version - Single circuit - Tandem DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)

POS.	DESCRIPTION
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	NTC Temperature sensor for DIGITAL SCROLL compressor

ONLY WITH REHEATING COIL OPTION 17 € ⊽ (12) (14) (15) (15) 6⊳ ⊲⊚ ©⊳ ⊲ © ⊳ ⊚ 16 (16) (10) 10 MC CIRC. 2 CIRC. 1 MC X Ż -[] (1) 2 2 $\overline{\mathbb{W}}$ -M 1 1 3 -D ⊲18 Ē \bigcirc 3 9 **6**⊳ (18)⊳ 0 0 ⊲⊚ D D 20 8 € ⊽ (18) 18 ൭ 5 5 Ž13 X13 (13) (13) SUPPLY LIMIT SUPPLY LIMIT 12 (12) 4 4 CONDENSING UNIT CONDENSING UNIT

Fig. 13.7 – Refrigerant circuit A version - Dual circuits - Single SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass

POS.	DESCRIPTION
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4

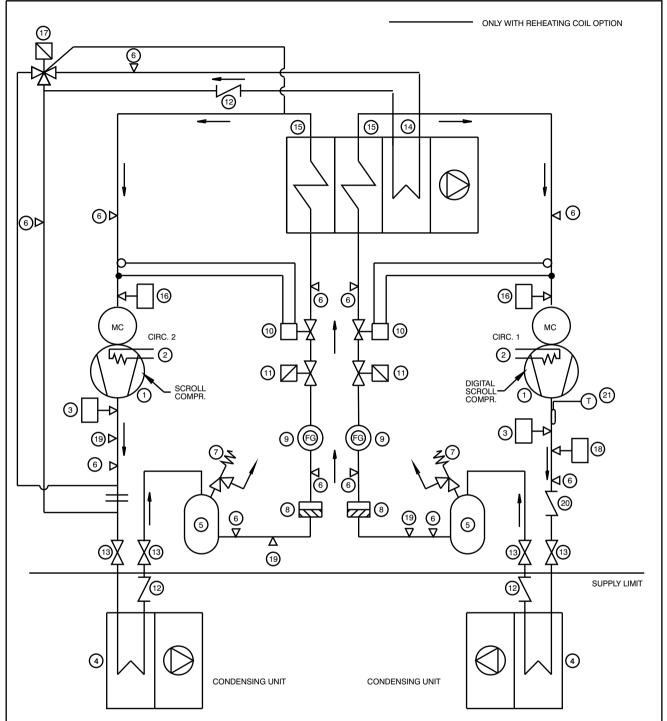
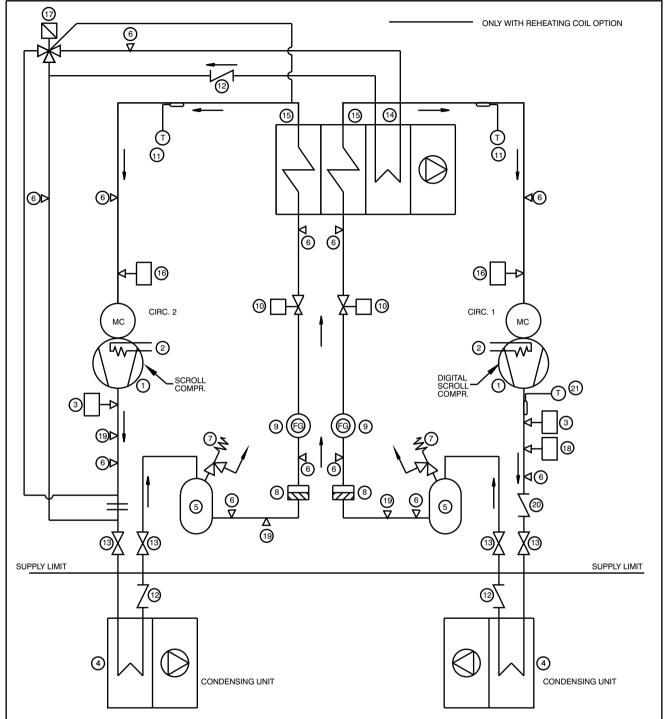

ONLY WITH REHEATING COIL OPTION (17) (12)(14) (15) (15) († (1) (T) (11) 6⊳ ⊲⊚ **6**⊳ (16) **∇** (6) ∆ ⊚ (16) мс MC CIRC. 2 CIRC. 1 ¥ 10 5 2 2 γV 3 ħ 3 9(6) (FG 9 (18⊳ ⊲18 **6**⊳ \triangleright ⊲6 6 6 23 ⑧ 6 V € ⊽ 5 5 X13 (13) X13 (13) SUPPLY LIMIT SUPPLY LIMIT 7(12) (12) 4 4 CONDENSING UNIT CONDENSING UNIT

Fig. 13.8 – Refrigerant circuit A version - Dual circuits - Single SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass

POS.	DESCRIPTION
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4


Fig. 13.9 – Refrigerant circuit A version - Dual circuits - Single SCROLL+DIGITAL SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve

POS.	DESCRIPTION
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	Check valve (only for PX044-054)
21	NTC Temperature sensor for DIGITAL SCROLL compressor

Fig. 13.10 - Refrigerant circuit A version - Dual circuits - Single SCROLL+DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

POS.	DESCRIPTION
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	Check valve (only for PX044-054)
21	NTC Temperature sensor for DIGITAL SCROLL compressor

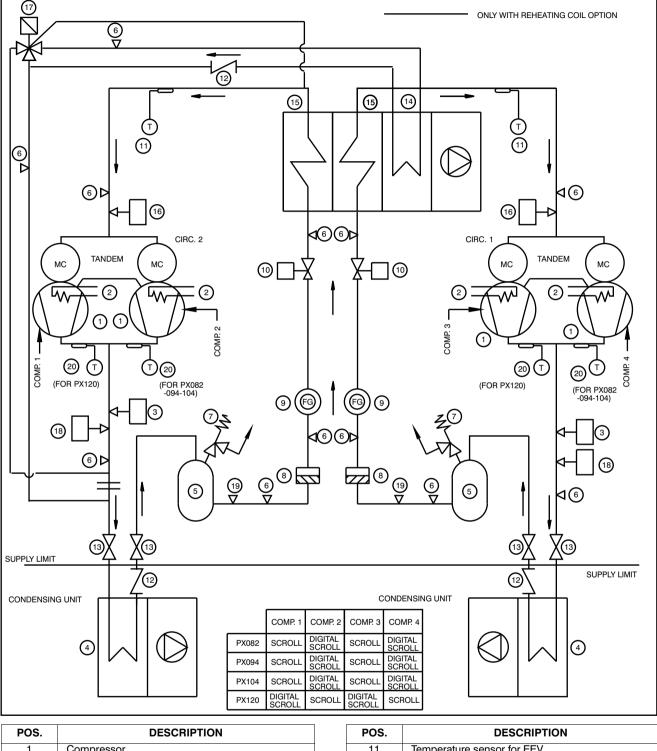

ONLY WITH REHEATING COIL OPTION <u>6</u> (12) (15) (14) (15) (11) € ⊅ 4⊚ (6) ⊳ (16) (16) **⊲©©⊳** CIRC. 2 CIRC. 1 TANDEM TANDEM мс мс мс мс 10 5 Ī 2 2 2 2 \mathbb{N} γv SCROLL COMPR. ᠿ SCROLL COMPR. (3)3 SCROLL COMPR. **(FG)(9** $9\overline{6}$ (19) (19) Z(7) Ð 6₽ ⊲⊚ ⊲©©⊳ (8) € ⊽ @ 5 (5) Δ (18) Δ (18) X13 (13) (13) (13) SUPPLY LIMIT SUPPLY LIMIT 12 (12) 4 (4) CONDENSING UNIT CONDENSING UNIT

Fig. 13.11 - Refrigerant circuit A version - Dual circuits - Tandem SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)

POS.	DESCRIPTION
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	High pressure transducer

Fig. 13.12 – Refrigerant circuit A version - Dual circuits - Tandem DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)

POS.	DESCRIPTION
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Access valve 1/4
20	NTC Temperature sensor for DIGITAL SCROLL compressor

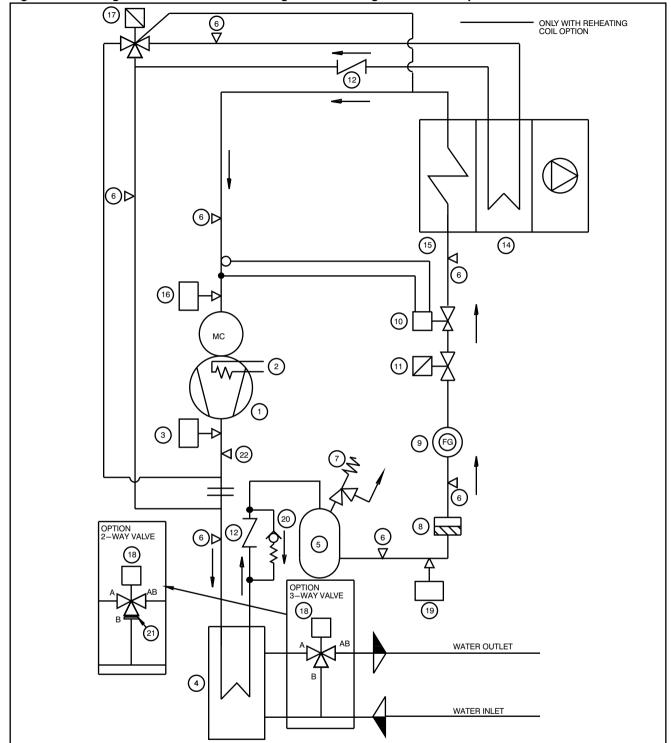


Fig. 13.13 - Refrigerant circuit W version - Single circuit - Single SCROLL compressor - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve

POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	Access valve 1/4
22	ACCESS VAIVE 1/4

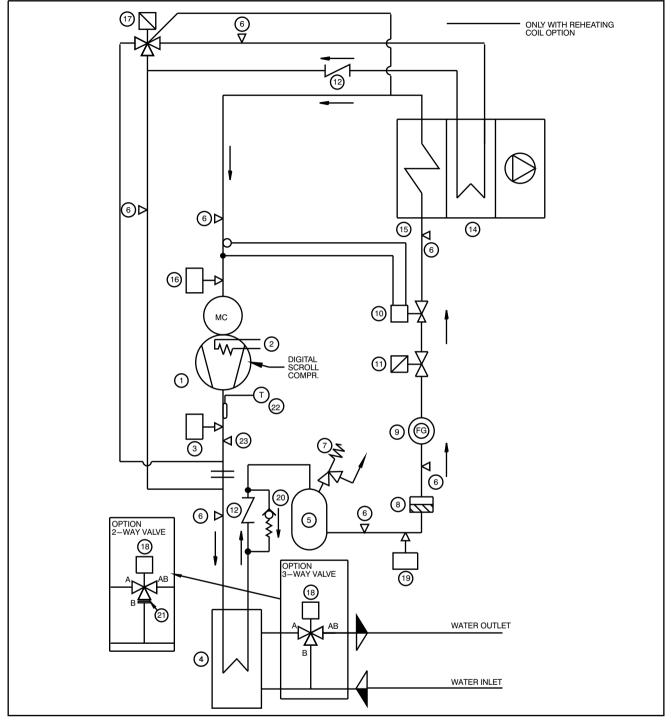
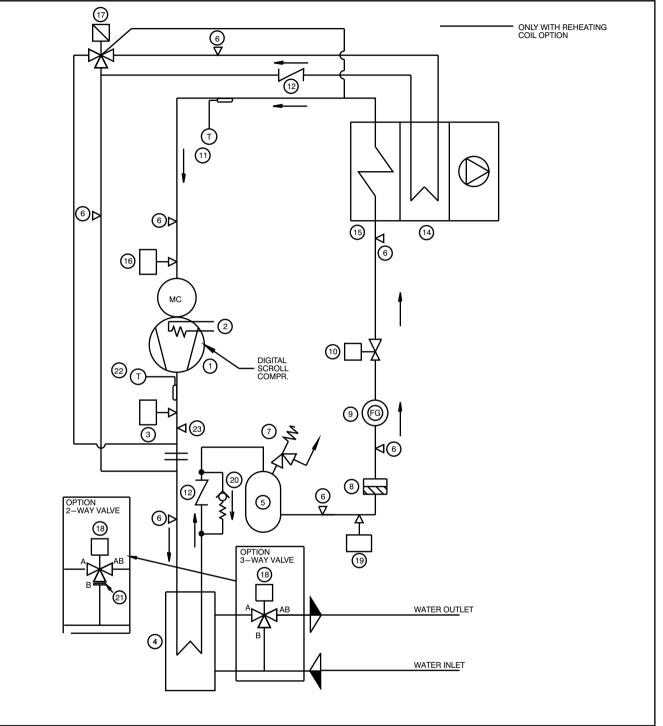

(17) <u>6</u> ONLY WITH REHEATING COIL OPTION 12) ⊚⊳ @⊳ (16) (15) (14) **∇** мс [2 Ś (1)3 ⊲22 (FG (20) (8)(12) 6 ∇ 5 OPTION 2-WAY VALVE 0۵ (18) OPTION 3-WAY VALVE ۱B (18) 21 WATER OUTLET в (4)WATER INLET

Fig. 13.14 - Refrigerant circuit W version - Single circuit - Single SCROLL compressor - EEV

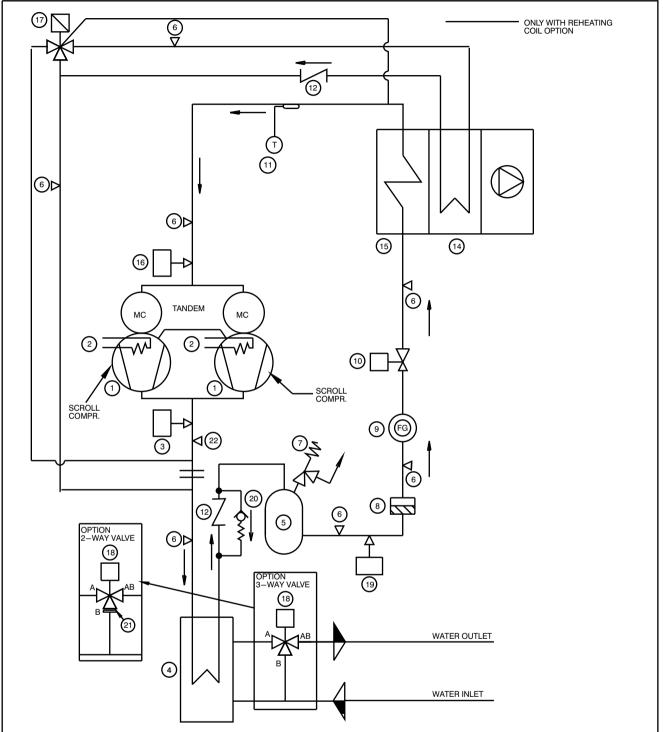
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

DESCRIPTION
Check valve
Reheating coil (optional)
Evaporator
Low pressure transducer
Reheating solenoid valve (optional)
Condensing regulation water valve
Pressure transducer condensing regulation
Check valve 10 bar (145 psi)
Blind disk – only with optional 2–way valve
Access valve 1/4


Fig. 13.15 - Refrigerant circuit W version - Single circuit - Single DIGITAL SCROLL compressor - TXV

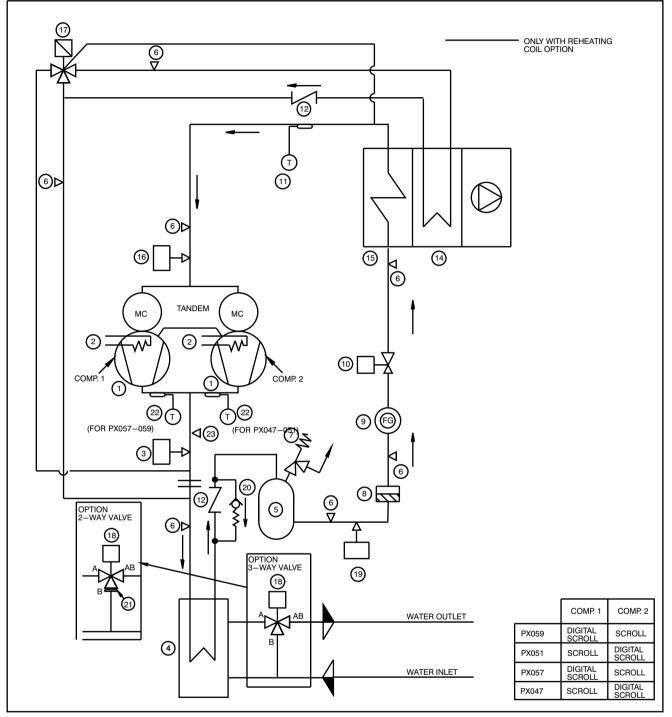
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve

POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	NTC Temperature sensor for DIGITAL SCROLL com- pressor
23	Access valve 1/4


Fig. 13.16 - Refrigerant circuit W version - Single circuit - Single DIGITAL SCROLL compressor - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2–way valve
22	NTC Temperature sensor for DIGITAL SCROLL com- pressor
23	Access valve 1/4


Fig. 13.17 - Refrigerant circuit W version - Single circuit - Tandem SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2–way valve
22	Access valve 1/4

Fig. 13.18 - Refrigerant circuit W version - Single circuit - Tandem DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

POS.	DESCRIPTION
13	Pressure transducer for electronic expansion valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	NTC Temperature sensor for DIGITAL SCROLL com- pressor
23	Access valve 1/4

(17) ONLY WITH REHEATING COIL OPTION <u>6</u> (12) ⊲6 ⊲⊚ 6⊳ (15) (15) (14) ∆ ⊚ **⊅** (16) (16) ᠿ 10 ¥ (10) мс CIRC. 2 MC CIRC. 1 22 2 $\overline{\mathbb{W}}$ \mathbb{M} -_ (1) $(\mathbf{1})$ FG 9 FG 9 22 ▷ **⊲**(22) $\overline{3}$ **△** ⑥ **∇** 6 (20 l₄6 6 $^{\odot}$ (12) (12) 6) ⊽ 6 ⊽ OPTION 2-WAY VALVE Þ 5 5 OPTION 2-WAY VALVE (18) (18) OPTION 3-WAY VALVE OPTION 3-WAY VALVE (19) (18) (18) 21 (21) WATER OUTLET AB 4 (4) WATER INLET

Fig. 13.19 - Refrigerant circuit W version - Dual circuits - Single SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve

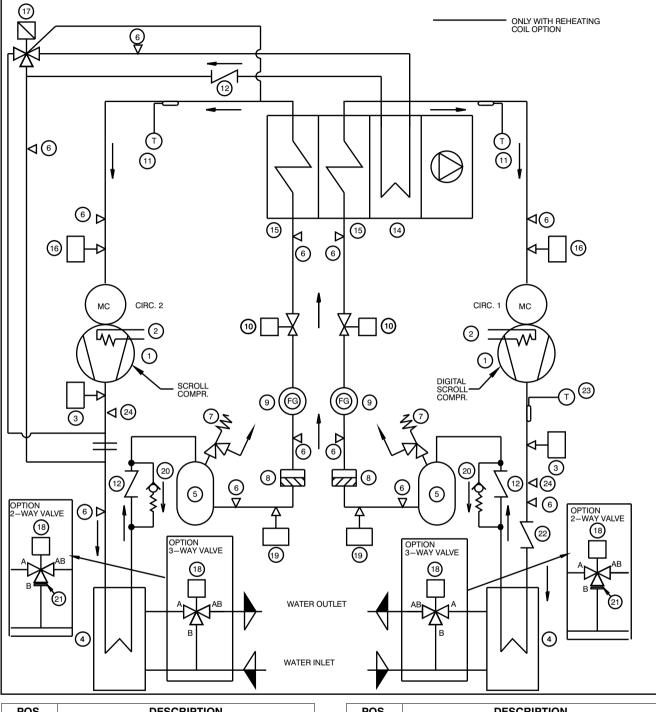
POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	Access valve 1/4
	, , ,

ONLY WITH REHEATING COIL OPTION (17) @ 0 (12) (T) (1) (11 ⊲⊚ <u>6</u> ⊲6 (15) (15) (14) ∆ ⊚ **∇** (16) 16 CIRC. 2 CIRC. мс мс 10 10 ӡ ┢ 2 2 $\overline{\mathsf{w}}$ М (1) \bigcirc FG 9 (FG (9) 3 ᠿ ⊲22 (22)⊳ 3**Z**(7) ⊿ ⊚ ⊲ ⊚ 6 ₽ \$ 20 (20 (12) (12) ⊲⊚ ş 5 ş 5 OPTION 2-WAY VALVE @⊳ OPTION 2-WAY VALVE (18) (18) OPTION 3-WAY VALVE OPTION 3-WAY VALVE (19) 19 (18) (18) WATER OUTLET AB в 4 4 WATER INLET

Fig. 13.20 - Refrigerant circuit W version - Dual circuits - Single SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

DESCRIPTION
Check valve
Reheating coil (optional)
Evaporator
Low pressure transducer
Reheating solenoid valve (optional)
Condensing regulation water valve
Pressure transducer condensing regulation
Check valve 10 bar (145 psi)
Blind disk – only with optional 2–way valve
Access valve 1/4


Fig. 13.21 - Refrigerant circuit W version - Dual circuits - Single SCROLL+DIGITAL SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	Check valve for PX044–054
23	NTC Temperature sensor for DIGITAL SCROLL com- pressor
24	Access valve 1/4

Fig. 13.22 – Refrigerant circuit W version – Dual circuits – Single SCROLL+DIGITAL SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	Check valve for PX044–054
23	NTC Temperature sensor for DIGITAL SCROLL com- pressor
24	Access valve 1/4

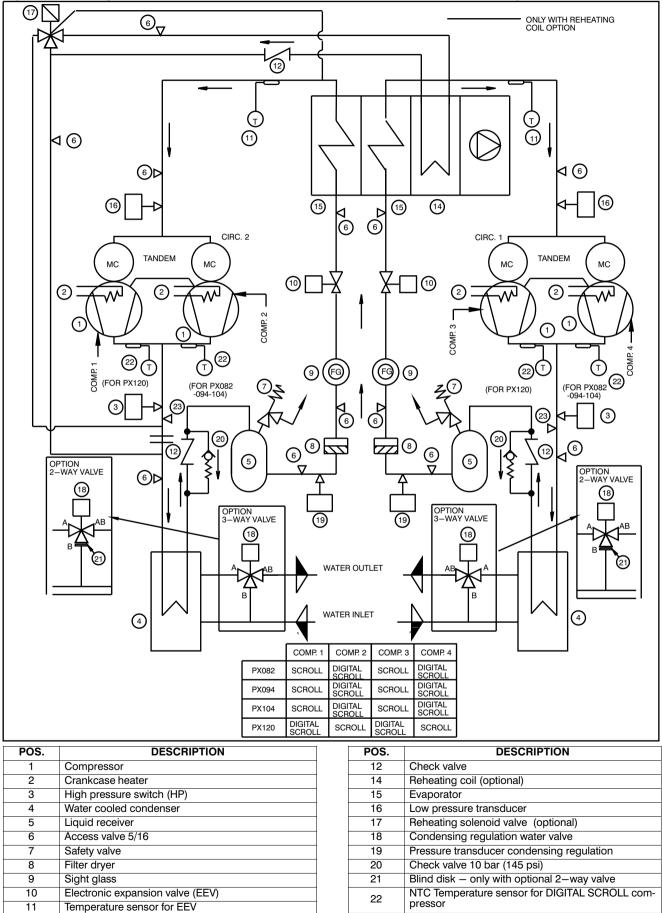

(17) ONLY WITH REHEATING COIL OPTION 6 ⊽ 12 (T) (1) **4**6 6⊳ ⊲6) (15) (15) (14) **∇** (16) (16) CIRC. 2 CIRC. 1 TANDEM TANDEM MC мс MC МС 2 <u>س</u> 2 2 2 $\sqrt{1}$ M M 10 10 (1)SCROLL COMPR. SCROLL. COMPR. (1)(1)(FG SCROLL SCROLL COMPR. 9 FG 9 $\overline{3}$ ⊲22 220 6 (3) 6 ⊲6) (20) 20 Ē 8 8 6) ⊽ (12) (12) 6 ⊽ OPTION 2-WAY VALVE 5 Ş 5 OPTION 2-WAY VALVE 6) (18) (18) OPTION 3-WAY VALVE OPTION 3-WAY VALVE (19) (18) (18) (21) WATER OUTLET AB B 4 (4) WATER INLET

Fig. 13.23 – Refrigerant circuit W version – Dual circuits – Tandem SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV

POS.	DESCRIPTION
12	Check valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Check valve 10 bar (145 psi)
21	Blind disk – only with optional 2-way valve
22	Access valve 1/4

Fig. 13.24 - Refrigerant circuit W version - Dual circuits - Tandem DIGITAL SCROLL compressors - EEV

23

Access valve 1/4

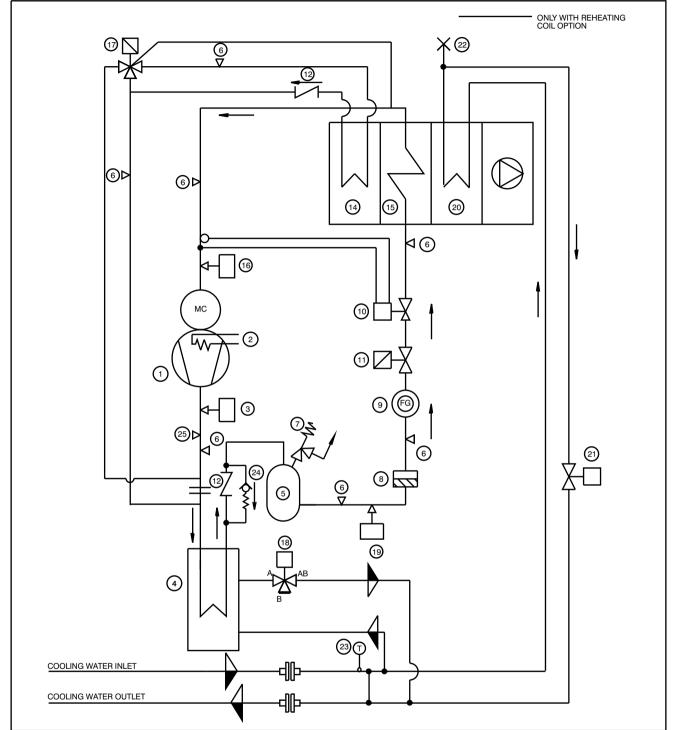
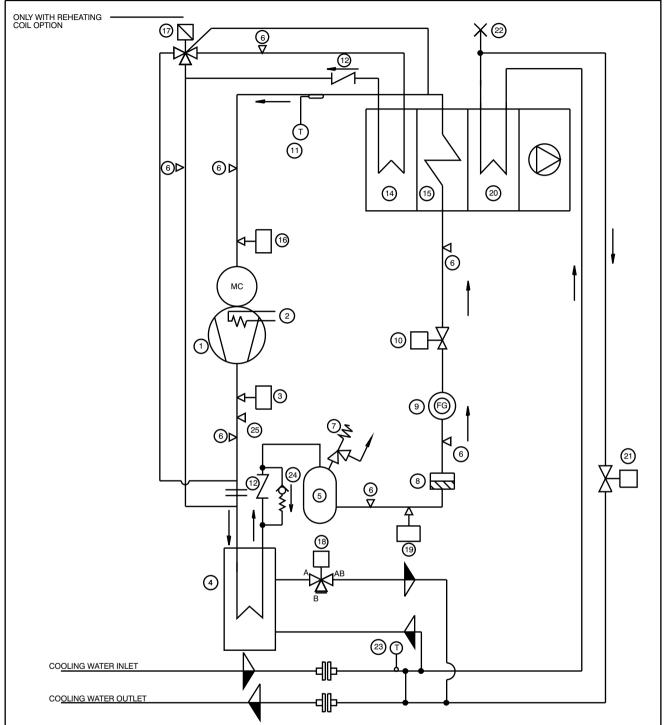
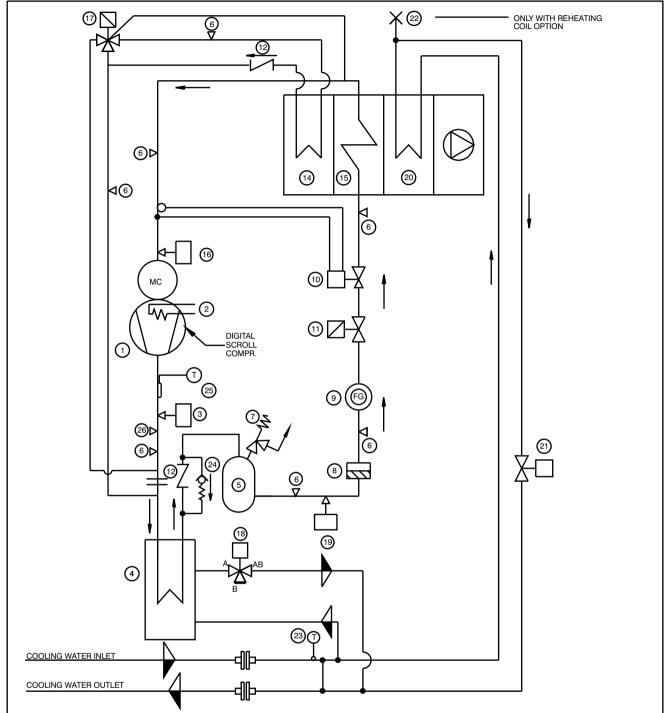



Fig. 13.25 - Refrigerant circuit F version - Single circuit - Single SCROLL compressor - TXV

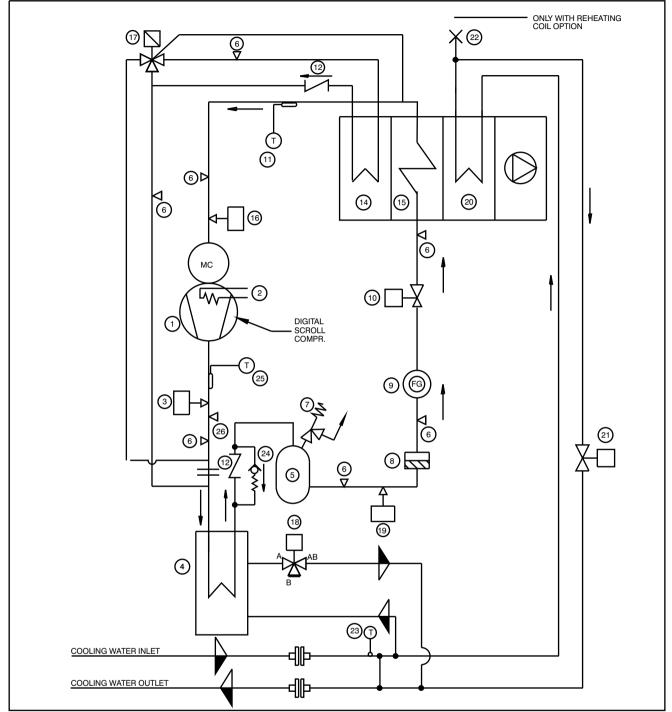
	1
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Access valve 1/4


Fig. 13.26 - Refrigerant circuit F version - Single circuit - Single SCROLL compressor - EEV

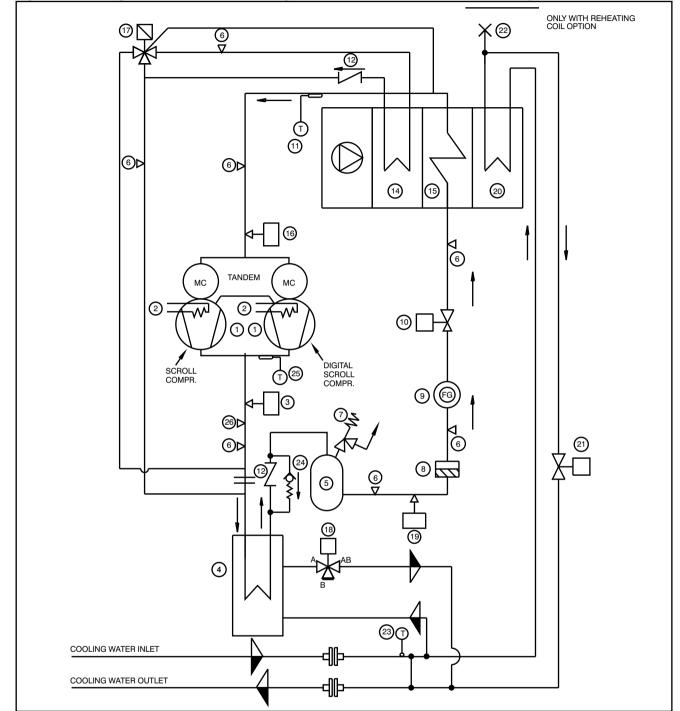
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Access valve 1/4


Fig. 13.27 - Refrigerant circuit F version - Single circuit - Single DIGITAL SCROLL compressor - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Access valve 1/4


Fig. 13.28 - Refrigerant circuit F version - Single circuit - Single DIGITAL SCROLL compressor - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Access valve 1/4

Fig. 13.29 - Refrigerant circuit F version - Single circuit - Tandem DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Access valve 1/4

ONLY WITH REHEATING COIL OPTION ₩22 <u>_</u> 12 \sim 6⊳ 0 🛛 20 (14) (15) (15) ⊲@ **∇**6 ∆ ⊚ 16 (16) 10 10 ⊬ мс мс CIRC. 2 CIRC. 1 5 2 (2) \mathbb{N} (1)(1)FG 9 (FG 9 3 3 T D 25⊳ |⊲ 25 ⊳ 6 **⊄** (6) 21 6⊳ **⊲**⊚ (24 8 6 6 ⊽ (12) Ş 5 5 19 19 4 (4) в 23 T COOLING WATER INLET -∰ COOLING WATER OUTLET ⊕

Fig. 13.30 - Refrigerant circuit F version - Dual circuits - Single SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Access valve 1/4

Fig. 13.31 - Refrigerant circuit F version - Dual circuits - Single SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

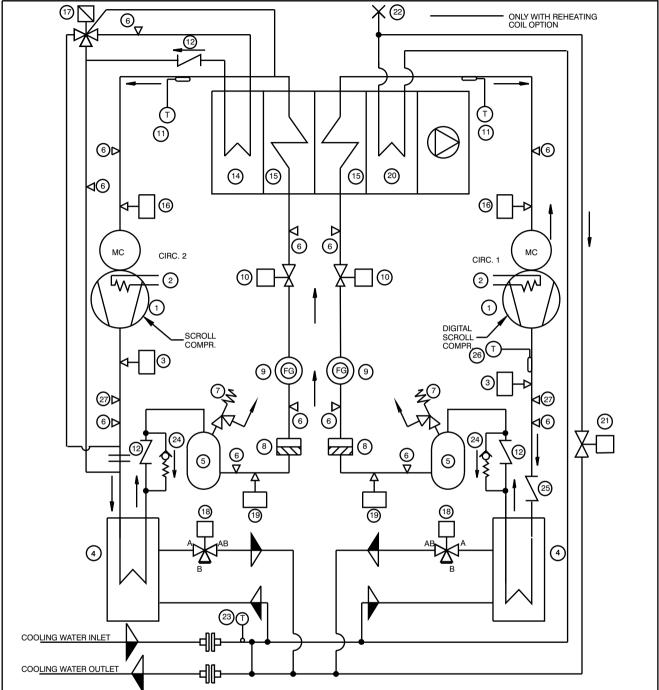
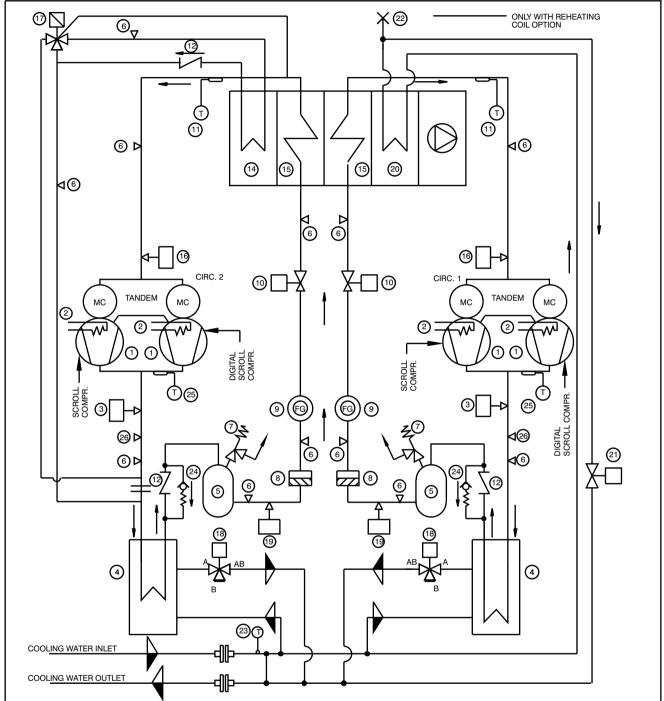

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Access valve 1/4

Fig. 13.32 – Refrigerant circuit F version – Dual circuits – Single SCROLL+DIGITAL SCROLL compressors – TXV ONLY WITH REHEATING Χ22 $\bigcirc \square$ 6 - X H 12 ĩ⁄1 **♦**6 @⊳ (14) (15) 20 (15) ⊲© **⊲** (6) ∆ ⊚ 16 16 ᠿ МС CIRC. 2 мс (10) CIRC. 1 (10) Y [2 2 $\overline{\mathbb{W}}$ \mathbb{N} (1 -__(1) DIGITAL SCROLL COMPR. SCROLL COMPR. (1)1.26 (T) 3 FG ٩ FG (9) 3 7; 4 @ @⊳ ŏ ۱ @⊳ Ò 6 21 24 **®**[@ (12)ł Ż 2 5 5 ş 25 19 4 (4) 23 T COOLING WATER INLET ⅆℙ COOLING WATER OUTLET ⅆℙ

POS.	DESCRIPTION	
1	Compressor	
2	Crankcase heater	
3	High pressure switch (HP)	
4	Water cooled condenser	
5	Liquid receiver	
6	Access valve 5/16	
7	Safety valve	
8	Filter dryer	
9	Sight glass	
10	Thermostatic expansion valve	
11	Shut-off solenoid valve	
12	Check valve	
14	Reheating coil (optional)	

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Check valve for PX044–054
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor
27	Access valve 1/4


Fig. 13.33 - Refrigerant circuit F version - Dual circuits - Single SCROLL+DIGITAL SCROLL compressors - EEV

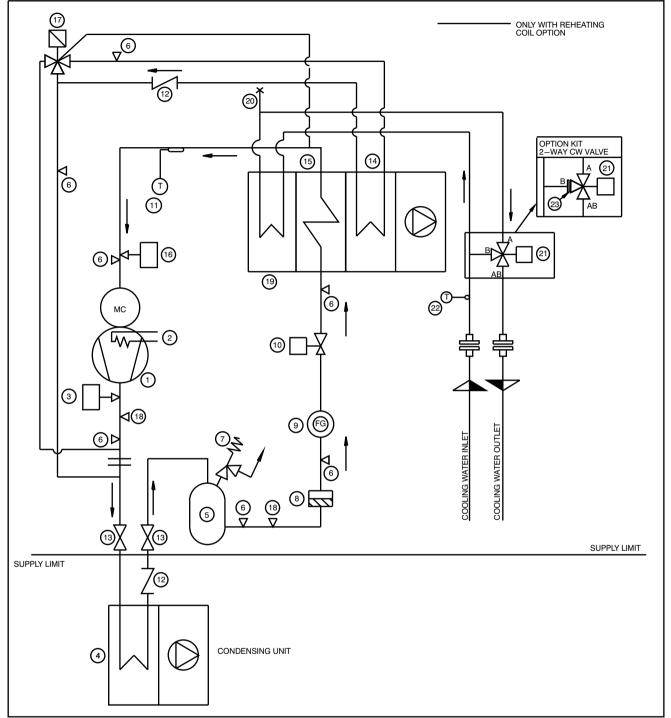
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	Check valve for PX044–054
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor
27	Access valve 1/4

Fig. 13.34 – Refrigerant circuit F version – Dual circuits – Tandem DIGITAL SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)

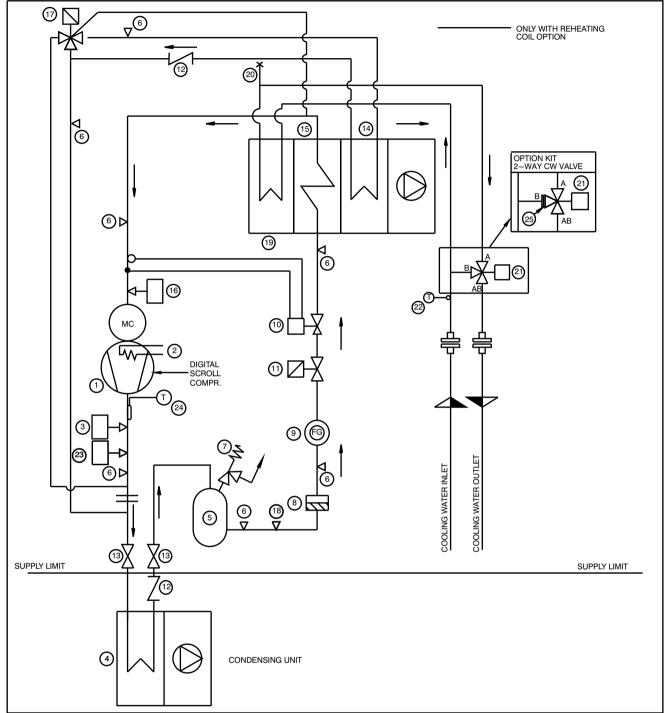
POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 2-way valve
22	Manual bleed valve
23	Inlet water sensor
24	Check valve 10 bar (145 psi)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Access valve 1/4


(17) ONLY WITH REHEATING COIL OPTION ©_⊽ @Ť (12) ⊲ © (15) (14) OPTION KIT 2-WAY CW VALVE (21) **⊚**⊳ (19) AB **⊲** (6) (16) ▫捉 21 1 @^{D-} MC 10 5 22 ⓓ⊉ 3 13 96 (6)⊳ COOLING WATER OUTLET COOLING WATER INLET 8 (18) ∇ 6) V 5 <u>X</u>13 (13) SUPPLY LIMIT SUPPLY LIMIT (12) 4 CONDENSING UNIT

	10.05	Refrigerant circuit D version -	Cinale elverit	Cinala CODOLL and	
гю.	13.35 -	Reiriderant circuit D version -	- Sindle Circuit -	- Single SCRULL CO	moressor – TXV

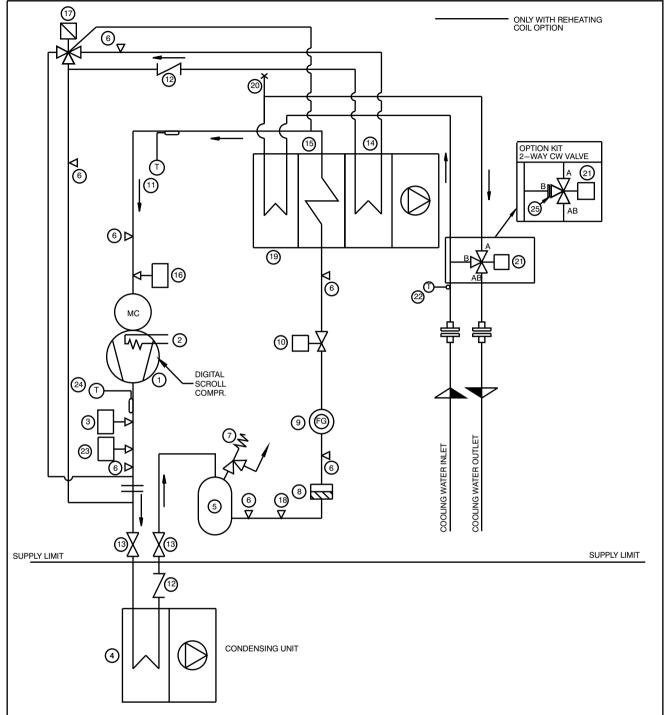
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve

POS.	DESCRIPTION
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	Blind disk – only with optional 2-way CW valve


Fig. 13.36 - Refrigerant circuit D version - Single circuit - Single SCROLL compressor - EEV

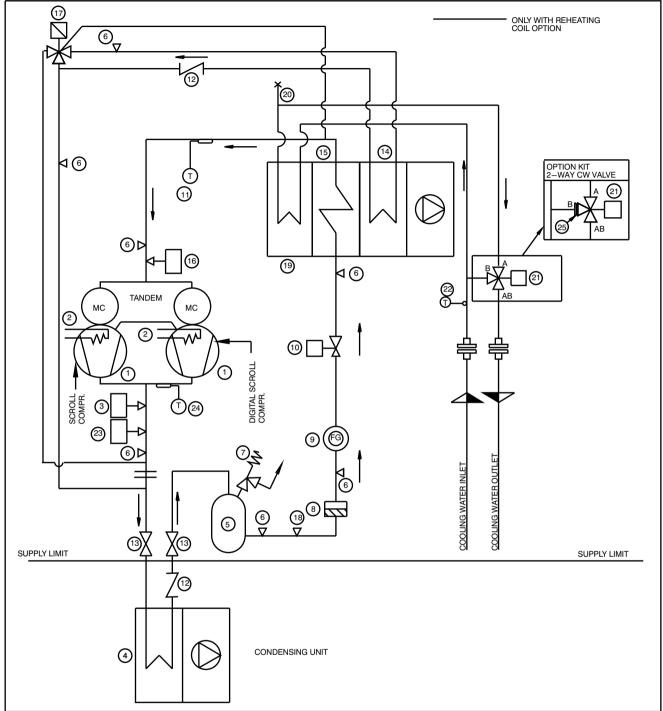
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

POS.	DESCRIPTION
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	Blind disk – only with optional 2–way CW valve


Fig. 13.37 - Refrigerant circuit D version - Single circuit - Single DIGITAL SCROLL compressor - TXV

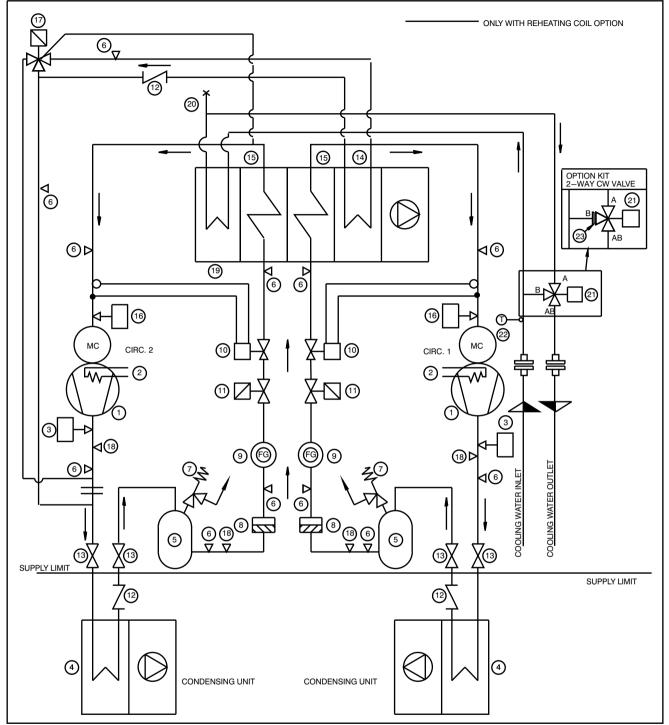
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
13	Shut-off valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	High pressure transducer
24	NTC Temperature sensor for DIGITAL SCROLL com- pressor
25	Blind disk – only with optional 2-way CW valve


Fig. 13.38 - Refrigerant circuit D version - Single circuit - Single DIGITAL SCROLL compressor - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	High pressure transducer
24	NTC Temperature sensor for DIGITAL SCROLL com- pressor
25	Blind disk – only with optional 2-way CW valve


Fig. 13.39 - Refrigerant circuit D version - Single circuit - Tandem DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	High pressure transducer
24	NTC Temperature sensor for DIGITAL SCROLL com- pressor
25	Blind disk – only with optional 2-way CW valve

Fig. 13.40 - Refrigerant circuit D version - Dual circuits - Single SCROLL compressors - TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve

POS.	DESCRIPTION
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	Blind disk – only with optional 2-way CW valve

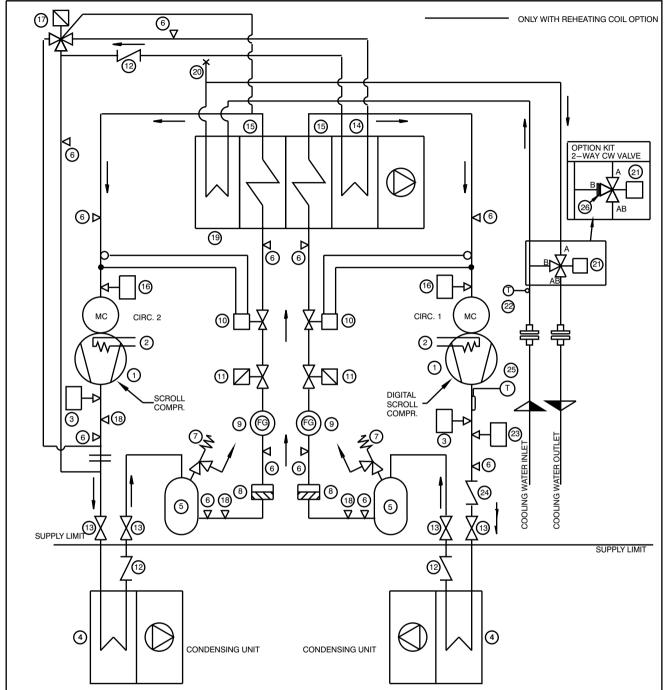
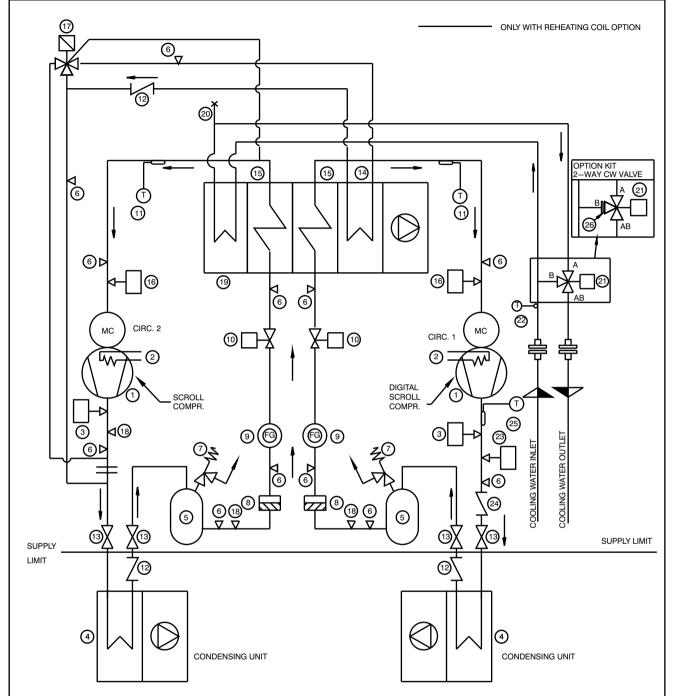

ONLY WITH REHEATING COIL OPTION _ ©⊽ @ (14) (15) (15) OPTION KIT 2-WAY CW VALVE (T) (1) **⊲** © (21) (11) (23 6⊳ ⊲6 (19) ₿ I I I ⊽ © © (16) (16) 6 22 T AB CIRC. 1 CIRC. 2 MC MC Ū. ℣ℿ℗ 2 2 Ŵ \mathbb{M} 1 ⊲18 3 3 FG (18⊳ 9(B 9 @⊳ COOLING WATER OUTLET ⊲⊚ COOLING WATER INLET 6 $\mathbb{Z}^{\mathbb{S}}$ (8) 6 0 0 0 0 (18) 6 5 5 SU<u>PPLY LIMIT</u> (13) X13 (13) SUPPLY LIMIT (12) (12) 4 4 CONDENSING UNIT CONDENSING UNIT

Fig. 13.41 - Refrigerant circuit D version - Dual circuits - Single SCROLL compressors - EEV

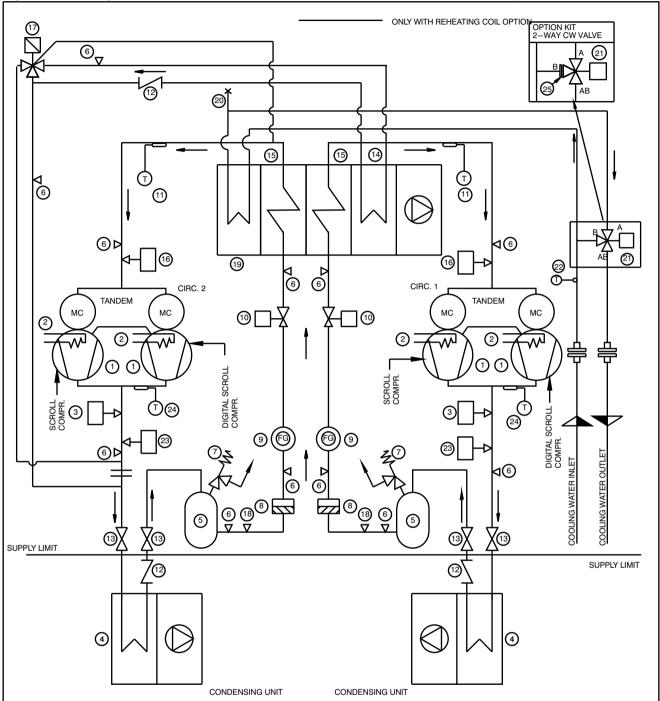
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve

POS.	DESCRIPTION
13	Shut-off valve
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer EEV
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	Blind disk – only with optional 2-way CW valve


Fig. 13.42 – Refrigerant circuit D version – Dual circuits – Single SCROLL+DIGITAL SCROLL compressors – TXV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	High pressure transducer
24	Check valve (only for PX044–054)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Blind disk - only with optional 2-way CW valve


Fig. 13.43 – Refrigerant circuit D version – Dual circuits – Single SCROLL+DIGITAL SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	High pressure transducer
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	Access valve 1/4
24	Check valve (only for PX044–054)
25	NTC Temperature sensor for DIGITAL SCROLL com- pressor
26	Blind disk – only with optional 2-way CW valve

Fig. 13.44 – Refrigerant circuit D version – Dual circuits – Tandem DIGITAL SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Air cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
13	Shut-off valve

POS.	DESCRIPTION
14	Reheating coil (optional)
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Access valve 1/4
19	Chilled water coil
20	Manual bleed valve
21	Chilled water 3-way valve
22	Inlet water sensor
23	High pressure transducer
24	NTC Temperature sensor for DIGITAL SCROLL com- pressor
25	Blind disk – only with optional 2-way CW valve

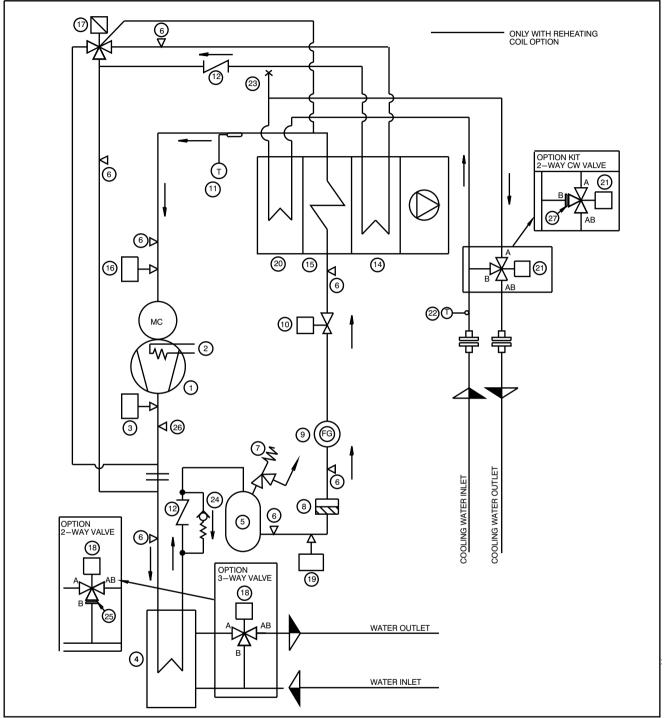
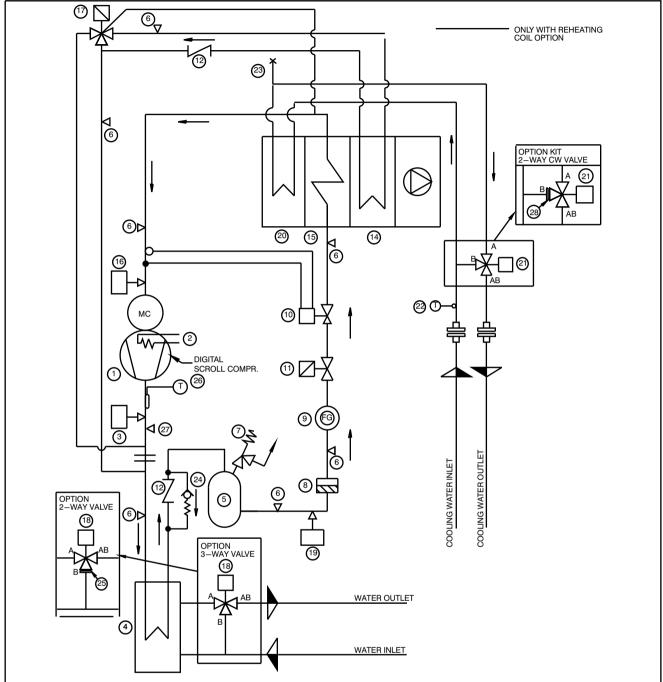

17 _ ©⊽ ONLY WITH REHEATING COIL OPTION Ð (12) 23 OPTION KIT 2-WAY CW VALVE **∇** (6) 21 А 6 AB 6⊳ 20 15 (14) **⊽** ≞∲ ිම 16 0⁰ MC 10 2 Ś 1 $\widehat{\mathbf{T}}$ 3 ⊲26 (FG ୭ Ξ COOLING WATER OUTLET COOLING WATER INLET (24 8 (12) 6 ⊽ OPTION 2-WAY VALVE ¢ Ş 5 6⊳ 18 OPTION 3-WAY VALVE (18) 25 AB WATER OUTLET 4 WATER INLET

Fig. 13.45 - Refrigerant circuit H version - Single circuit - Single SCROLL compressor - TXV

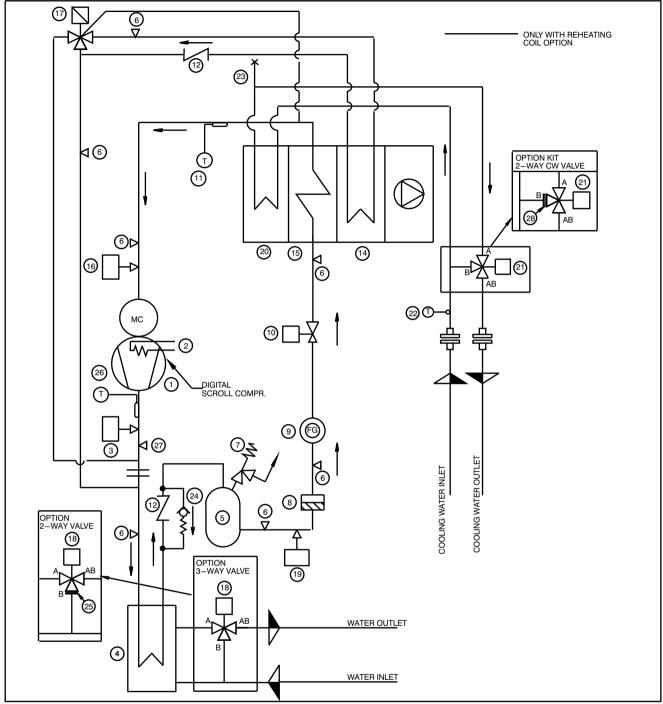
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Thermostatic expansion valve
11	Shut-off solenoid valve
12	Check valve
14	Reheating coil (optional)

POS.	DESCRIPTION
15	Evaporator
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 3-way valve
22	Inlet water sensor
23	Manual bleed valve
24	Check valve 10 bar (145 psi)
25	Blind disk – only with optional 2–way valve
26	Access valve 1/4
27	Blind disk – only with optional 2-way CW valve


Fig. 13.46 - Refrigerant circuit H version - Single circuit - Single SCROLL compressor - EEV

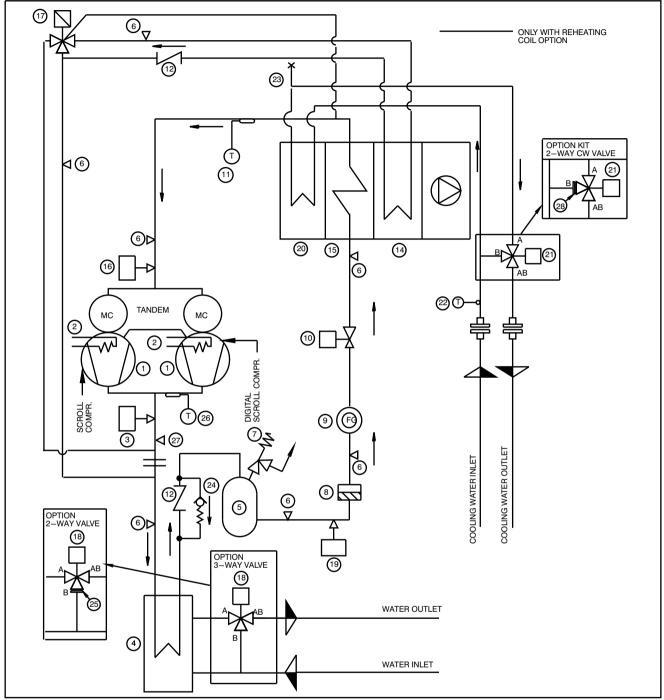
POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)

DESCRIPTION	
Evaporator	
Low pressure transducer	
Reheating solenoid valve (optional)	
Condensing regulation water valve	
Pressure transducer condensing regulation	
Chilled water coil	
Chilled water 3-way valve	
Inlet water sensor	
Manual bleed valve	
Check valve 10 bar (145 psi)	
Blind disk – only with optional 2-way valve	
Access valve 1/4	
Blind disk – only with optional 2–way CW valve	


Fig. 13.47 - Refrigerant circuit H version - Single circuit - Single DIGITAL SCROLL compressor - TXV

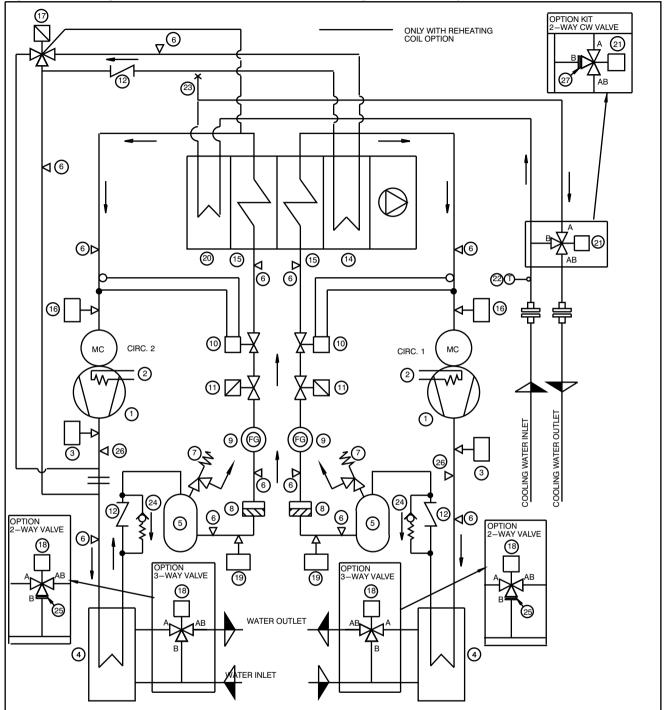
POS.	DESCRIPTION	
1	Compressor	
2	Crankcase heater	
3	High pressure switch (HP)	
4	Water cooled condenser	
5	Liquid receiver	
6	Access valve 5/16	
7	Safety valve	
8	Filter dryer	
9	Sight glass	
10	Thermostatic expansion valve	
11	Shut-off solenoid valve	
12	Check valve	
14	Reheating coil (optional)	
15	Evaporator	

POS.	DESCRIPTION	
16	Low pressure transducer	
17	Reheating solenoid valve (optional)	
18	Condensing regulation water valve	
19	Pressure transducer condensing regulation	
20	Chilled water coil	
21	Chilled water 3-way valve	
22	Inlet water sensor	
23	Manual bleed valve	
24	Check valve 10 bar (145 psi)	
25	Blind disk – only with optional 2-way valve	
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor	
27	Access valve 1/4	
28	Blind disk – only with optional 2-way CW valve	


Fig. 13.48 - Refrigerant circuit H version - Single circuit - Single DIGITAL SCROLL compressor - EEV

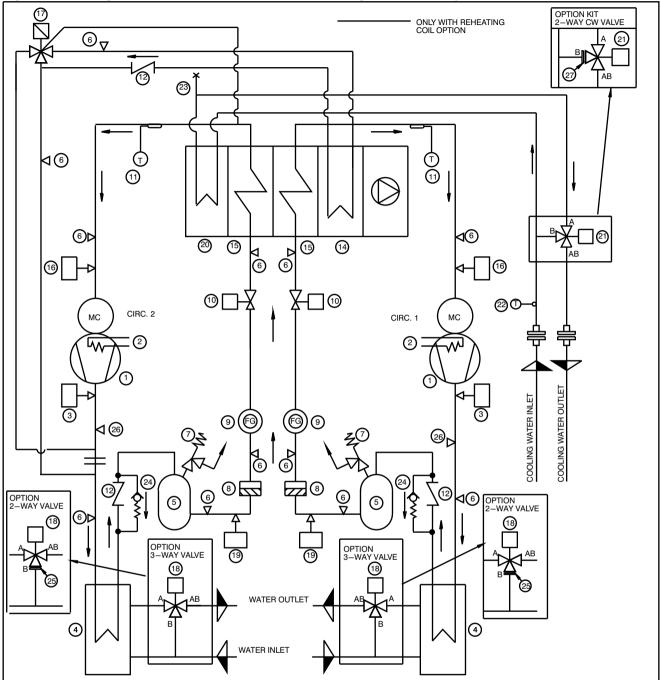
POS.	DESCRIPTION	
1	Compressor	
2	Crankcase heater	
3	High pressure switch (HP)	
4	Water cooled condenser	
5	Liquid receiver	
6	Access valve 5/16	
7	Safety valve	
8	Filter dryer	
9	Sight glass	
10	Electronic expansion valve (EEV)	
11	Temperature sensor for EEV	
12	Check valve	
14	Reheating coil (optional)	
15	Evaporator	

POS.	DESCRIPTION	
16	Low pressure transducer	
17	Reheating solenoid valve (optional)	
18	Condensing regulation water valve	
19	Pressure transducer condensing regulation	
20	Chilled water coil	
21	Chilled water 3-way valve	
22	Inlet water sensor	
23	Manual bleed valve	
24	Check valve 10 bar (145 psi)	
25	Blind disk – only with optional 2–way valve	
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor	
27	Access valve 1/4	
28	Blind disk - only with optional 2-way CW valve	


Fig. 13.49 - Refrigerant circuit H version - Single circuit - Tandem DIGITAL SCROLL compressors - EEV

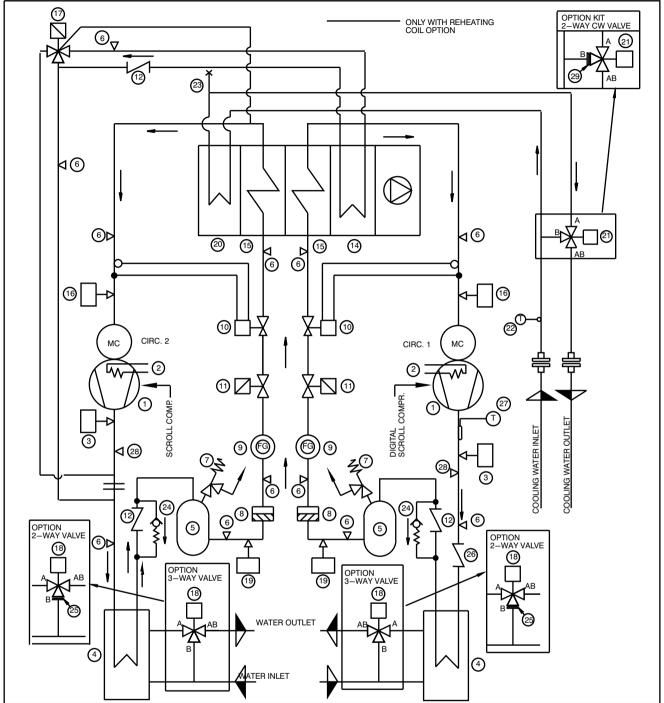
POS.	DESCRIPTION	
1	Compressor	
2	Crankcase heater	
3	High pressure switch (HP)	
4	Water cooled condenser	
5	Liquid receiver	
6	Access valve 5/16	
7	Safety valve	
8	Filter dryer	
9	Sight glass	
10	Electronic expansion valve (EEV)	
11	Temperature sensor for EEV	
12	Check valve	
14	Reheating coil (optional)	
15	Evaporator	

POS.	DESCRIPTION		
16	Low pressure transducer		
17	Reheating solenoid valve (optional)		
18	Condensing regulation water valve		
19	Pressure transducer condensing regulation		
20	Chilled water coil		
21	Chilled water 3-way valve		
22	Inlet water sensor		
23	Manual bleed valve		
24	Check valve 10 bar (145 psi)		
25	Blind disk – only with optional 2–way valve		
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor		
27	Access valve 1/4		
28	Blind disk – only with optional 2-way CW valve		


Fig. 13.50 - Refrigerant circuit H version - Dual circuits - Single SCROLL compressors - TXV

POS.	DESCRIPTION	POS
1	Compressor	15
2	Crankcase heater	16
3	High pressure switch (HP)	17
4	Water cooled condenser	18
5	Liquid receiver	19
6	Access valve 5/16	20
7	Safety valve	21
8	Filter dryer	22
9	Sight glass	23
10	Thermostatic expansion valve	24
11	Shut-off solenoid valve	25
12	Check valve	26
14	Reheating coil (optional)	27

POS.	DESCRIPTION		
15	Evaporator		
16	Low pressure transducer		
17	Reheating solenoid valve (optional)		
18	Condensing regulation water valve		
19	Pressure transducer condensing regulation		
20	Chilled water coil		
21	Chilled water 3-way valve		
22	Inlet water sensor		
23	Manual bleed valve		
24	Check valve 10 bar (145 psi)		
25	Blind disk – only with optional 2-way valve		
26	Access valve 1/4		
27	Blind disk – only with optional 2–way CW valve		


Fig. 13.51 - Refrigerant circuit H version - Dual circuits - Single SCROLL compressors - EEV

POS.	DESCRIPTION	
1	Compressor	
2	Crankcase heater	
3	High pressure switch (HP)	
4	Water cooled condenser	
5	Liquid receiver	
6	Access valve 5/16	
7	Safety valve	
8	Filter dryer	
9	Sight glass	
10	Electronic expansion valve (EEV)	
11	Temperature sensor for EEV	
12	Check valve	
14	Reheating coil (optional)	

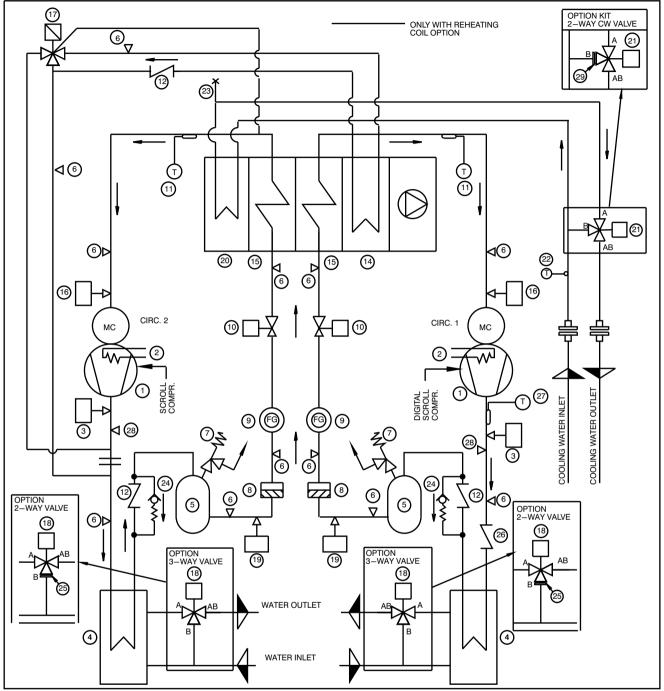

POS.	DESCRIPTION	
15	Evaporator	
16	Low pressure transducer	
17	Reheating solenoid valve (optional)	
18	Condensing regulation water valve	
19	Pressure transducer condensing regulation	
20	Chilled water coil	
21	Chilled water 3-way valve	
22	Inlet water sensor	
23	Manual bleed valve	
24	Check valve 10 bar (145 psi)	
25	Blind disk – only with optional 2-way valve	
26	Access valve 1/4	
27	Blind disk – only with optional 2-way CW valve	

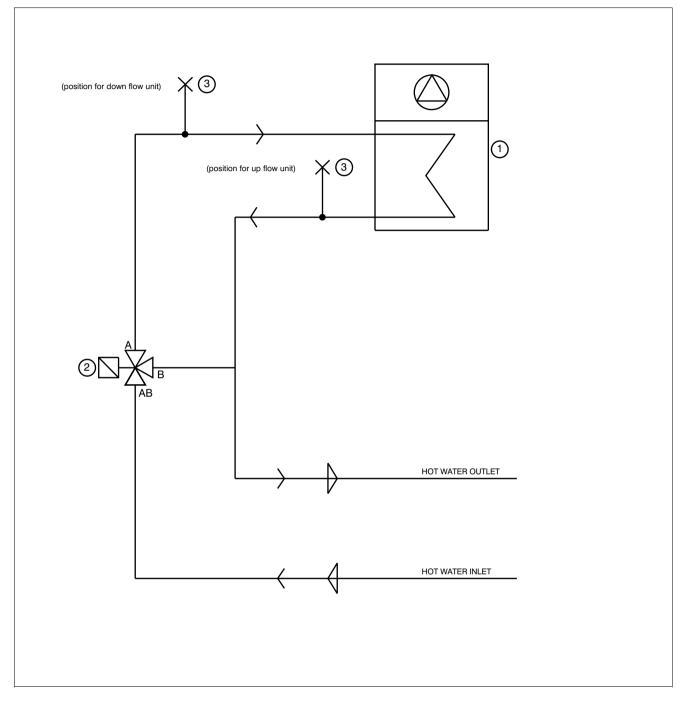
Fig. 13.52 – Refrigerant circuit H version – Dual circuits – Single SCROLL+DIGITAL SCROLL compressors – TXV

POS.	DESCRIPTION	POS	. DESCRIPTION
1	Compressor	16	Low pressure transducer
2	Crankcase heater	17	Reheating solenoid valve (optional)
3	High pressure switch (HP)	18	Condensing regulation water valve
4	Water cooled condenser	19	Pressure transducer condensing regulation
5	Liquid receiver	20	Chilled water coil
6	Access valve 5/16	21	Chilled water 3-way valve
7	Safety valve	22	Inlet water sensor
8	Filter dryer	23	Manual bleed valve
9	Sight glass	24	Check valve 10 bar (145 psi)
10	Thermostatic expansion valve	25	Blind disk – only with optional 2-way valve
11	Shut-off solenoid valve	26	Check valve for PX044–054
12	Check valve	27	NTC Temp. sensor for DIGITAL SCROLL compr.
14	Reheating coil (optional)	28	Access valve 1/4
15	Evaporator	29	Blind disk – only with optional 2-way CW valve

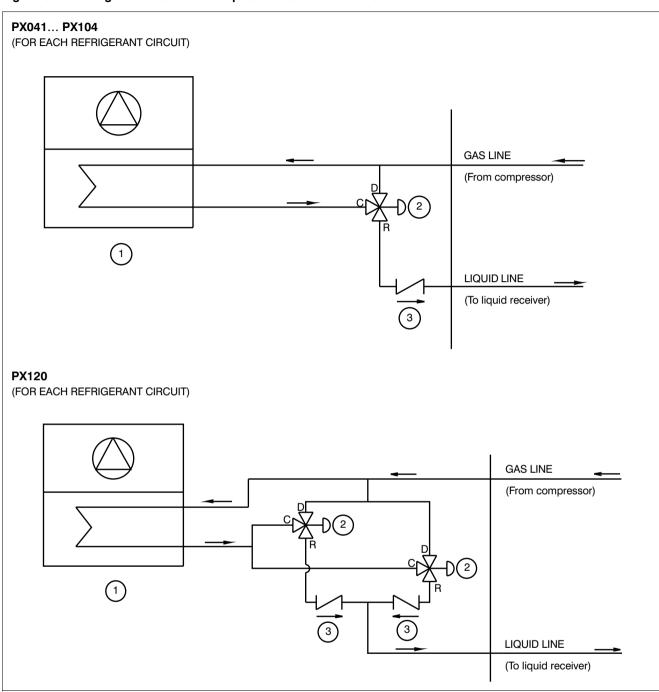
Fig. 13.53 - Refrigerant circuit H version - Dual circuits - Single SCROLL+DIGITAL SCROLL compressors - EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)
15	Evaporator

POS.	DESCRIPTION
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 3-way valve
22	Inlet water sensor
23	Manual bleed valve
24	Check valve 10 bar (145 psi)
25	Blind disk – only with optional 2-way valve
6	Check valve for PX044–054
27	NTC Temp. sensor for DIGITAL SCROLL compr.
28	Access valve 1/4
29	Blind disk – only with optional 2-way CW valve


Fig. 13.54 – Refrigerant circuit H version – Dual circuits – Tandem DIGITAL SCROLL compressors – EEV

POS.	DESCRIPTION
1	Compressor
2	Crankcase heater
3	High pressure switch (HP)
4	Water cooled condenser
5	Liquid receiver
6	Access valve 5/16
7	Safety valve
8	Filter dryer
9	Sight glass
10	Electronic expansion valve (EEV)
11	Temperature sensor for EEV
12	Check valve
14	Reheating coil (optional)
15	Evaporator


POS.	DESCRIPTION
16	Low pressure transducer
17	Reheating solenoid valve (optional)
18	Condensing regulation water valve
19	Pressure transducer condensing regulation
20	Chilled water coil
21	Chilled water 3-way valve
22	Inlet water sensor
23	Manual bleed valve
24	Check valve 10 bar (145 psi)
25	Blind disk – only with optional 2-way valve
26	NTC Temperature sensor for DIGITAL SCROLL com- pressor
27	Access valve 1/4
28	Blind disk – only with optional 2-way CW valve

POS.	Components
1	Reheating coil
2	On/off 3-way valve
3	Manual bleed valve

Fig. 13.56 - Refrigerant circuit for head pressure control valve installation

POS.	Components
1	Air cooled condenser
2	Head pressure control valve
3	Check valve

Silencing cartridges for supply hoods

See Chap. 7

High efficiency filters

See Chap. 9

Filter holding duct

See Chap. 9

Fresh air kit

See Chap. 9

Air Economizer

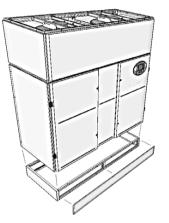
The Air Economizer comprises an extension hood 850mm height with a dampers system installable on top of the Downflow units. This system allows the free–cooling taking advantage of cool outdoor air to condition indoor space.

The iCOM checks the external air condition (temperature/humidity) and depending on environment conditions controls the dampers system mixing the indoor unit air with cool outdoor air; it is possible to have 100% outdoor air, mixed outdoor air and water cooling or 100% water cooling.

The Air Economizer system delivers high energy savings reducing or eliminating the cost of refrigerant pumping.

To use the Air Economizer the building has to be equipped with suitable air ducts and the dampers system modulating permits to use different channel configurations.

Note: it is required a flange 50 mm high to connect the air economizer to the unit (see Connecting Flange).


Air economizer available configuration:

Horizontal hood with grill

A supply plenum with horizontal air flow can be installed on top of the unit. The 600 mm high plenum has the same design as the unit; it consists of sandwich panels lined with non-flammable insulation material of class 0 (ISO 1182.2), density 30 kg/m³. It is equipped with a double deflection grill.

Base modules

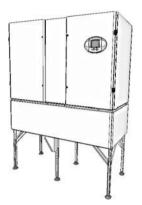
A 200 mm high base module can be supplied on request to support Liebert[®] PDX Upflow and at the same time allow pipework to enter the base of the unit when a raised floor is not installed.

Base Module h 600/300 mm with rear air intake

A base module can be supplied on request to allow Liebert® PDX Upflow to work with a rear/bottom or bottom air intake. The rear/bottom air intake base module is 600 mm high, the bottom air intake base module is 300 mm high. This accessory at the same time supports the unit allowing the piping connection when a raised floor is not installed. Note

that in this case the air conditioning unit must be ordered with a blind front panel and an open basement.

Vertical flow extension hood


An extension hood can be supplied on request and can be installed on top of the unit. It is available with different height: 500mm; 600mm; 700mm; 800mm; 900 mm. It has the same design as the unit and consists of sandwich panels lined with non–flammable insulation material of class 0 (ISO 1182.2), density 30 kg/m³.

Note: on Downflow units it is required a flange 50 mm high to connect the extension hood to the unit (see Connecting Flange).

Base frames

A base frame can be supplied on request to support Liebert® PDX when installed with a raised floor. The frame could be regulated with a height from 120mm to 800mm and the unit is fixed on it.

Kit Legs

Legs kit can be supplied on request to support Liebert[®] PDX when installed with a raised floor. The legs are fixed with the unit frame and allow to support the unit at different height, three kits are available with different height: adjustable in the range: h1 - 30 - 370mm; h2 370 - 570mm; h3 570 - 800mm.

Flooding alarm (Liquistat)

The flooding alarm detects the presence of water or of any other conductive liquid and, opening a circuit, activates an alarm.

There are no moving parts and it is not subject to dirt or vibration. Up to 5 sensors can be connected to the same flooding alarm device to control many points in the room. The alarm device is supplied with a sensor. Additional sensors can be ordered separately.

Smoke alarm (Smokestat)

A smoke alarm can be installed to stop the conditioning system when the presence of smoke in the intake air is perceived. This is an optical smoke detector (it uses the Tyndall effect), which absorbs very low current (100mA) and is absolutely insensitive to light or wind.

Fire alarm (Firestat)

In some applications the fire regulations require the installation of an alarm device (Firestat) which deactivates the air conditioner when the intake air temperature is too high.

Floor tiles support kit

Floor tiles support kit can be supplied on request to support tiles around Liebert[®] PDX Downflow Down, when installed with a raised floor.


Floor tiles support is fixed on the unit frame/fan module and allows to support tiles until 40 mm thickness.

With a correct installation, the maximum admitted vertical distributed load on the perimeter is 180 kg/m.

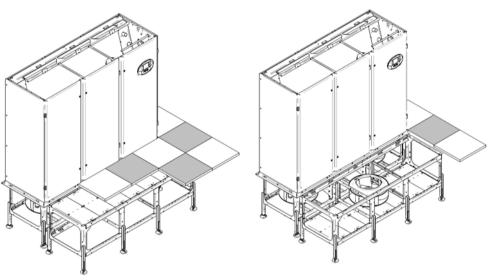
I.e.: on the lateral side, 870 mm long, the maximum admitted distributed load is 157kg.

Floor tiles support is earthed with the unit frame.

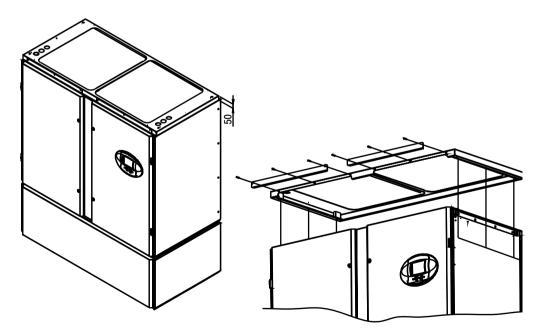
Follow local rules for system grounding.

Fans maintenance kit

Fans maintenance kit can be supplied on request to support tiles on Liebert[®] PDX Downflow Down when installed with a raised floor.


Fans maintenance kit allows maintenance operations, in particular fans replacement, when the fans are installed below the floor level.

Removing tiles on the frontal area, it is possible to lift some footboards, moving them on the lower level, creating a service volume in the raised floor.


With a correct installation, the maximum admitted vertical distributed load is 600 kg/m².

Footboards are designed to support distributed load as indicated above, and the maximum concentrated load is 150 kg (on the area 50x50 mm).

Fans maintenance kit must be earthed following the local rules.

Connecting Flange

In Downflow Up, Downflow Frontal, Downflow Down units with predisposition for damper, economizer and plenum installation (digit 18=S, F, G, H or L) the unit is shipped with a connecting flange 50 mm high fixed on the unit top, so the unit is 50 mm higher. If required, the flange can be removed by unscrewing the fixing screws (removing the side panel to access the screws head) and repositioned later.

Il Fabbricante dichiara che questo prodotto è conforme alle direttive Europee:

The Manufacturer hereby declares that this product conforms to the European Union directives:

Der Hersteller erklärt hiermit, dass dieses Produkt den Anforderungen der Europäischen Richtlinien gerecht wird:

Le Fabricant déclare que ce produit est conforme aux directives Européennes:

El Fabricante declara que este producto es conforme a las directivas Europeas:

O Fabricante declara que este produto está em conformidade com as directivas Europeias:

Tillverkare försäkrar härmed att denna produkt överensstämmer med Europeiska Uniones direktiv:

De Fabrikant verklaart dat dit produkt conform de Europese richtlijnen is:

Vaimistaja vakuuttaa täten, että tämä tuote täyättää seuraavien EU-direktiivien vaatimukset:

Produsent erklærer herved at dette produktet er i samsvar med EU-direktiver:

Fabrikant erklærer herved, at dette produkt opfylder kravene i EU direktiverne:

Ο Κατασκευαστής δηλώνει ότι το παρόν προΪόν είναι κατασκευασμένο αύμφωνα με τις οδηγίες της Ε.Ε.:

2006/42/EC; 2004/108/EC; 2006/95/EC; 97/23/EC

Ensuring the High Availability Of Mission-Critical Data and Applications

Emerson Network Power, a business of Emerson (NYSE:EMR), is the global leader in enabling Business-Critical Continuity™ from grid to chip for telecommunication networks, data centers, health care and industrial facilities. Emerson Network Power provides innovative solutions and expertise in areas including AC and DC power and precision cooling systems, embedded computing and power, integrated racks and enclosures, power switching and controls, monitoring, and connectivity. All solutions are supported globally by local Emerson Network Power service technicians. Liebert power, precision cooling and monitoring products and services from Emerson Network Power improve the utilization and management of data center and network technologies by increasing IT system availability, flexibility and efficiency.

Locations

Emerson Network Power - Headquarters EMEA

Via Leonardo Da Vinci 16/18 Zona Industriale Tognana 35028 Piove di Sacco (PD) Italy Tel: +39 049 9719 111 Fax: +39 049 5841 257

Emerson Network Power - Service EMEA

Via Leonardo Da Vinci 16/18 Zona Industriale Tognana 35028 Piove di Sacco (PD) Italy Tel: +39 049 9719 111 Fax: +39 049 9719 045

United States

1050 Dearborn Drive P.O. Box 29186 Columbus, OH 43229 Tel: +1 6148880246

Asia

29/F The Orient Square Building F. Ortigas Jr. Road, Ortigas Centre Pasig City 1605 Philippines Tel: +63 2 620 3600 Fax: +63 2 730 9572

AC Power Embedded Computing Outside Plant Rack & Integrated Cabinets Connectivity **Embedded Power** Power Switching & Control Services DC Power Monitoring Surge Protection Precision Cooling

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2008 Emerson Electric Co.

While every precaution has been taken to ensure the accuracy and completeness of this literature, Liebert Corporation assumes no responsibility and accepts no liability for damages resulting from use of this information or for any errors or omissions. ©2008 Liebert Corporation.

All rights reserved throughout the world. Specifications subject to change without notice.

Liebert and the Liebert logo are registered trademarks of Liebert Corporation. All names referred to are trademarks or registered trademarks of their respective owners.

Emerson Network Power

The global leader in Business-Critical Continuity™