

INSTRUCTIONS FOR THE INSTALLER

6795773 / A5 - Ver. 00

()

Precautions and Safety Standards	4
HOW TO USE THIS MANUAL	5
VMF system - Guidelines for system	6
List of material required to implement system:	7
VMF System - Material required	7
Hydraulic diagram of VMF system	9
VMF System - Implement the technical room	
Material for ZONE A	
VMF system - Implement zone A	
Material for ZONE B	
VIVIF system - Implement zone B	
Malerial for ZONE C	
VIVIF System - Implement zone C	10 10
Malerial IOF ZONE D	١٥ ١٩
Material for ZONE E	20
VME system - Implement zone F	20
Complete VMF system	
VMF networks serial connections	23
VMF system - Software settings	
ASSISTANCE many proceedures	26
ASSISTANCE Ineriu procedures	20
Browshing and choice of ASSISTANCE menu.	
Enter the assistance menu (Password 202)	
Setting number of MASTER fail colls present in system.	
Procedure for solf addressing MASTER for coils of the system	، 21 28
Force visualization of an address	
Visualization of systems status	20 30
Set the presence of the VME-ACS accessory module	31
Set management of simultaneous loads	
Set delay in switching on electric resistance	
Set loading priority in domestic hot water production	
Set the type of system managed by VME-ACS accessory	
SINGLE VALVE system - System 1 type:	
SINGLE VALVE system - System 2 type:	
SINGLE VALVE system - System 3 type:	
MULTI-VALVE system:	
Set the multi-function output on the VMF-ACS accessory:	
Set the band on heating setting for ECONOMY mode	
Set the band on cooling setting for ECONOMY mode	
Set heating temperature for chiller	40
Set cooling temperature for chiller	40
Set frequency for dynamic variation of setting in ECONOMY mode	
Set the extent for decrease of setting in ECONOMY mode	
Set the extent for increase of setting in ECONOMY mode	42
Set the compensation temperature setting based on external air for comfort mode	43
Set the domestic hot water temperature for the chiller	
Set the ON/OFF band on the domestic hot water production setting	
Set maximum value for domestic hot water production	45
Set the type of chiller/heat pump board	
Set the chiller switch off delay after conclusion of system demand	
Set the presence of the VMF-CRP recovery unit/ boiler module	
Set the management mode of the installed heat recovery units	
Set the number of pumps managed by the VIVIE system	
Associate each tan coil to its own pump	

AERMEC S.p.A. I-37040 Bevilacqua (VR) Italy-Via Roma, 996 Tel. (+39) 0442 633111 Telefax 0442 93730 - (+39) 0442 93566 www.aermec.com - info@aermec.com

VMF-E5 panel

SERIAL NUMBER	

We, the undersigned, hereby declare under our own responsibility that the assembly in question, **EC DECLARATION OF CONFORMITY** defined as follows: NAME E5 TYPE Remote panel.

To which this declaration refers, complies with the following harmonised standards:

IEC EN 60730-1 Safety standard. IEC EN 61000-6-1 Immunity and electromagnetic emissions for residential environments. IEC EN 61000-6-3

Thereby, compliant with the essential requirements of the following directives:

- LVD Directive: 2006/95/EC.
- Electromagnetic Compatibility Directive 2004/108/EC.

Bevilacqua

15/01/2008

Marketing Manager Signature

Precautions and Safety Standards

for any further reference. Read all of the information contained in this manual carefully and complete

Read all of the information contained in this manual carefully and completely. Pay particular attention to the user regulations accompanied by "DANGER" or "ATTENTION" in so much as, if not complied with, the unit or objects may be damaged and/or persons injured. For anomalies not contemplated by this manual,

contact the area After-sales Service as soon as possible. The appliance must be installed in such a way that maintenance and/or repair operations are possible.

The appliance warranty does not cover the costs for ladder trucks, scaffolding or other elevation systems that may become necessary for carrying out servicing under warranty. AERMEC S.p.A. declines all responsibility for any damage due to improper use of the machine, partial or hasty reading of the information contained in this manual.

HOW TO USE THIS MANUAL

This manual is intended to provide a complete support for installation of VMF systems. These systems are made up of several elements which, once installed correctly, must communicate one with another forming a network of devices which will work automatically.

VMF systems can differ by number and type of elements making up an air conditioning system. This documentation has been drawn up analysing in detail an example of a system which uses all the accessories managed by the VMF system.

THE INFORMATION PROVIDED IN THIS MANUAL IS DEDICATED TO VMF SYSTEM INSTALLERS. WE RECOMMEND PAYING THE UTMOST ATTENTION WHILE PERFORMING THE ELECTRICAL CONNECTIONS OF THE COMPONENTS AND SETTING THE SYSTEM SOFTWARE AS INCORRECT OPERATIONS COULD DAMAGE THE SYSTEM.

VMF system - Guidelines for system

As specified in the introduction, this manual will guide the installer for the correct implementation of a VMF system based on a practical comprehensive example.

1

Management of 5 distinct zones thus divided:

A NIGHT zone (composed of two rooms) where a **ducted INVERTER** unit is installed, making it possible to control the unit by a **wall-mounted panel** as well as by a centralised panel.

A second NIGHT zone where a fan coil unit is installed, making it possible to control the units by a wall-mounted panel as well as by a centralised panel.

• A DAY zone where a **fan coil** unit is installed, making it possible to control the units by **controls on-board the machine** as well as by a centralised panel.

• A DAY zone where **fan coils** are installed, making it possible to control the units by **controls on-board the machine** as well as by a centralised panel.

G A second DAY zone where **fan coils** are installed, making it possible to control the units by **controls on-board the machine** as well as by a centralised panel.

(2) Management of an INVERTER heat pump.

(3) Management of domestic hot water production with integration by an electric resistance.

(4) Management of a heat recovery unit and an air quality probe.

VMF System - Material required

NOTE: the proposed example requires different system components and relative accessories; this section provides a detailed list of the material required for each zone.

ATTENTION: some elements of the system are NOT available as AERMEC accessories; the installer is in charge of choosing, dimensioning and adapting material to the VMF system; however, in this example, these components will be listed generically WITHOUT REFERRING TO ANY SPECIFIC SIZE.

List of material required to implement system:

Zone 🛆			
Quantity	Element	Notes	
1	FCXI P	The selected ductable inverter unit will allow both rooms of the zone to be served without inserting further units; naturally proper ducts must be implemented to do this.	
x 1	VMF-E18	This thermostat is necessary to manage an inverter unit in a VMF system.	
x 1	VMF - E4	This wall-mounted panel allows to pilot the master of the zone to which it is connected.	

Zone B			
Quantity	Element	Notes	
x 1	Omnia HL	This zone has only one room which will be served by one sole fan coil.	
x 1	VMF-E1	This thermostat is necessary to manage a MASTER unit in a VMF system.	
x 1	VMF - E4	This wall-mounted panel allows to pilot the master of the zone to which it is connected.	

Zone 🖸			
Quantity	Element	Notes	
x 1	Omnia HL	This zone has only one room which will be served by one sole fan coil.	
x 1	VMF-E1	This thermostat is necessary to manage a MASTER unit in a VMF system.	
x 1	VMF-E2H	This interface allows to pilot the master fan coil selected for the zone.	

Zone 🖸			
Quantity	Element	Notes	
x 2	Omnia HL	This zone has only one room, which will be served by two fan coils (one MASTER and one SLAVE).	
x 1	VMF-E1	This thermostat is necessary to manage a MASTER unit in a VMF system.	
x 1	VMF - EO	This thermostat is necessary to manage a SLAVE unit in a VMF system.	
x 1	VMF-E2H	This interface allows to pilot the master fan coil selected for the zone.	

Zone 🕒			
Quantity	Element	Notes	
xЗ	Omnia HL	This zone has only one room, which will be served by three fan coils (one MASTER and two SLAVES).	
x 1	VMF-E1	This thermostat is necessary to manage a MASTER unit in a VMF system.	
x 2	VMF - EO	This thermostat is necessary to manage a SLAVE unit in a VMF system.	
x 1	VMF-E2H	This interface allows to pilot the master fan coil selected for the zone.	
x 1	VMF-E5	This interface allows to pilot the ENTIRE VMF system; this component is not part of any zone as it pilots all of them.	

Technical room				
Quantity	Element	Notes		
x 1	ANLI70HX Heat pump to provide the required output to heat and condition the system (heat pump with and inverter hydraulic pump).			
x 1	MODU - 485A	RS-485 interface for supervision systems with modbus protocol (accessory necessary to implement communication between the chiller/heat pump and VMF system).		
x 1	VMF - ACS3KTM	Electric control board to control loads involved in management and production of domestic hot water.		
x 2 VMF-CRP		To implement the system used in this example, two accessory VMF - CRP expansion boards are necessary; one is used to manage the recovery unit, the VOC probe and the boiler; the other manages the 4 pumps serving the zones.		
x 1	VMF-VOC	Air quality detection probe; an air recovery unit can be managed based on that detected by this probe.		
x 1	UR	Air recovery unit; thanks to the VMF - VOC probe, this unit is used to guarantee air exchange inside the VMF system.		
x 1	System Storage Tank			
x 1	Supplementary electric resistance for DHW			
x 1	DHW storage tank	All of these parts are NOT supplied by Aermec, but are considered as necessary parts to implement the		
x 1	3-way diverter valve	VMF system; the general connections to insert them in the VMF system will be indicated for them.		
x 1	Temperature probe for DHW storage tank			
x 4	Pumps			

Hydraulic diagram of VMF system

NOTE: VMF systems fully manage an air conditioning/heating system and relative domestic hot water production; however before implementing a control system, the loads which will be connected to it must be highlighted.

ATTENTION: the installation of the components to implement the system are not taken into consideration in this manual; for further information concerning installation of the individual hydraulic components, refer to the component's specific documentation.

VMF System - Implement the technical room

Sequence of operations to be performed to install the various components:

(1) Install the selected heat pump; the unit must be appropriately installed electrically and hydraulically according to that described in the system design. The heat pump is connected to the MODBUS serial line by means of the MODU-485A accessory (see the relevant documentation to install this accessory).

(2) Install the system storage tank; the system storage tank must be installed according to standards in force, making sure all the components required for its correct use are supplied (loading unit, pressure gauge, safety valves, etc...).

(3) Install the DHW storage tank; the DHW storage tank must also be installed according to standards in force, making sure all the components required for its correct use are supplied (loading unit, pressure gauge, safety valves, etc...); remember to pay the utmost attention when selecting the supplementary electric resistance, the size of which is linked to the dimension of the tank itself (the supplementary resistance will also affect the type of electric control board to be purchased).

(4) Install the supplementary electric resistance for DHW storage tank; the DHW storage tank must be provided with a 3kW single-phase supplementary electric resistance with relative safety thermostat, to be used in some phases of domestic hot water production (for example during the anti-legionella cycle). The resistance must be installed on the storage tank, According to the procedures indicated on the relevant documentation; the resistance power supply must be connected to the specific terminals on the VMF-ACS3KTM accessory (as indicated in the VMF-ACS board installation procedure).

(5) Install the 3-way diverter valve; this valve allows the VMF system to divert water from the air-conditioning system to the DHW storage tank; this valve must be installed on the heat pump flow line, upstream the storage tanks (as highlighted in the VMF system hydraulic diagram) connecting it to the VMF-ACS3KTM control board (as indicated in the VMF-ACS control board installation procedure, provided further on).

(6) Install the VMF-ACS3KTM accessory; this accessory allows to manage the loads involved in domestic hot water production, based on the intended type of system; in the proposed example the accessory will manage:

- The probe inserted in the system storage tank;
- The probe inserted in the DHW storage tank;
- The 3-way diverter valve;

144

- The electric resistance (3kW single-phase) inserted in the DHW storage tank.

To install the VMF-ACS electric control board, refer to the specific documentation.

(7) Install the VMF-CRP expansion board (1); this expansion board manages different types of loads; in this case it will manage the heat recovery unit and the VMF-VOC accessory.

(8) Install the VMF-CRP expansion board (2); this expansion board manages different types of loads; in this case it will manage the 4 zone pumps. The installation of the two VMF-CRP expansion boards requires appropriate positioning in a specific electric box inside the technical room. The electric box, the fixing brackets, the transformer powering the VMF-CRP modules and all the protective elements necessary are not supplied. For further information concerning assembly of the VMF-CRP modules, refer to the specific documentation.

(9) Install a collector with relative zone pumps; this element allows to manage the hydraulic lines and the pumps of each individual zone from a point located in the technical room, as indicated in the standard hydraulic diagram in the chapter "Hydraulic diagram of VMF system".

(10) Install the heat recovery unit; the UR unit provides an air exchange in the various rooms. For further information concerning assembly of the heat recovery unit, refer to the specific documentation.

(11) Install the VMF-VOC probe; the accessory VMF-VOC probe detects air quality and therefore pilots a heat recovery unit. For further information concerning assembly of the heat recovery unit, refer to the specific documentation.

VMF system - Implement zone

i

The figure to the left indicates which rooms make up zone A; the master unit installed in this zone is identified on VMF-E5 by the label "NIGHT A".

In this case, the zone is served by one unit alone, and it is therefore managed as master. The type of unit chosen obliges the installer to use the VMF-E18 thermostat as it is an inverter fan coil.

Material for ZONE

An FCXI-P series unit has been selected in this zone to meet requests; by making a suitable duct, this unit can air condition both rooms making up this zone; the unit will be managed by installing a wall-mounted VMF-E4 panel.

The material required to implement this zone is:

Sequence of operations to be performed to install the various components:

(1) Install the FCXI-P fan coil: this unit is the only fan coil of the zone (MASTER). The unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation; the duct must be properly sized based on the features of the fan coil.

(2) Install the VMF-E18 thermostat: to manage the INVERTER fan coil via a VMF network, a VMF-E18 thermostat must be installed on the fan coil. This accessory allows to connect the control interface for the zone master (in the proposed example, the interface is represented by a VMF-E4), and to connect the thermostat to the VMF system serial network (for detailed information on installation and connection of the VMF-E18 thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

(b) mount the box of the VMF-E18 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the inverter control module (we recommend referring to the wiring diagrams of the unit to perform this connection). (d) earth the VMF-E18 thermostat;

(e) connect the power supply to the VMF-E18 thermostat;

144

(f) connect the air probe to the VMF-E18 thermostat (the air probe is indicated as SA in the wiring diagrams);

(g) connect the water probe to the VMF-E18 thermostat (the water probe is indicated as SW in the wiring diagrams); (h) connect the wall-mounted VMF-E4 control panel (this connection can be made even if the box of the VMF-E18 thermostat is closed);

(i) connect the VMF-E18 thermostat to the VMF network (these connections will be specified more in detail in the chapter VMF NETWORKS SERIAL CONNECTIONS).

ATTENTION: the VMF-E18 thermostat boards have dip switches which MUST be set correctly based on the features of the fan coil to which the thermostat is connected. Refer to the thermostat documentation to set these dip switches correctly.

(3) Install the wall-mounted VMF-E4 panel: to manage the FCXI-P fan coil directly from the room of Zone A, the wall-mounted VMF-E4 panel must be fitted (refer to the specific documentation to install the panel).

VMF system - Implement zone

i

The figure to the left indicates which rooms make up zone B; the master unit installed in this zone is identified on VMF-E5 by the label "NIGHT B".

In this case, the zone is served by one unit alone, and it is therefore managed as master. The type of unit chosen obliges the installer to use the VMF-E1 thermostat.

Material for ZONE

An OMNIA HL unit has been selected in this zone to meet requests; the fan coil will be piloted by installation of a wall-mounted VMF-E4 panel.

The material required to implement this zone is:

Sequence of operations to be performed to install the various components:

(1) Install the Omnia HL fan coil: this unit is the only fan coil of the zone (MASTER). The unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation.

(2) Install the VMF-E1 thermostat: to be able to manage the fan coil via a VMF network, a VMF-E1 thermostat must be installed on the fan coil, to which the user interface will be linked (in the specific example it is a VMF-E4). For detailed information on installation and connection of the VMF-E1 thermostat, refer to the specific documentation. The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

144

(b) mount the box of the VMF-E1 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (d) connect the power supply to the VMF-E1 thermostat;

(e) connect the air probe to the VMF-E1 thermostat (the air probe is indicated as SA in the wiring diagrams); (f) connect the water probe to the VMF-E1 thermostat (the water probe is indicated as SW in the wiring diagrams);

(f) connect the water probe to the VMF-E1 thermostat (the water probe is indicated as SW in the wiring diagrams); (g) connect the wall-mounted VMF-E4 control panel (this connection can be made even if the box of the VMF-E1 thermostat is closed);

(h) connect the VMF-E1 thermostat to the VMF network (these connections will be specified more in detail in the chapter VMF NETWORKS SERIAL CONNECTIONS).

ATTENTION: the VMF-E18 thermostat boards have dip switches which MUST be set correctly based on the features of the fan coil to which the thermostat is connected. Refer to the thermostat documentation to set these dip switches correctly.

(3) Install the wall-mounted VMF-E4 panel: to manage the FCXI-P fan coil directly from the room of Zone A, the wall-mounted VMF-E4 panel must be fitted (refer to the specific documentation to install the panel).

VMF system - Implement zone G

The figure to the left indicates which rooms make up zone C; the master unit installed in this zone is identified on VMF-E5 by the label "Bathroom".

In this case, the zone is served by one unit alone (master); the type of unit chosen obliges the installer to use the VMF-E1 thermostat.

Material for ZONE C

An OMNIA HL unit has been selected in this zone to meet requests; the unit will be piloted by installation of a VMF-E2H control interface.

The material required to implement this zone is:

(1) Install the Omnia HL fan coil: this unit is the only fan coil of the zone (MASTER). The unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation.

(2) Install the VMF-E1 thermostat: to be able to manage the fan coil via a VMF network, a VMF-E1 thermostat must be installed on the fan coil (for detailed information on installation and connection of the thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

144

(b) mount the box of the VMF-E1 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (e) connect the power supply to the VMF-E1 thermostat;

(f) connect the air probe to the VMF-E1 thermostat (the air probe is indicated as SA in the wiring diagrams);

(g) connect the water probe to the VMF-E1 thermostat (the water probe is indicated as SW in the wiring diagrams); (h) connect the VMF-E2H control interface (this connection can be made even if the box of the VMF-E1 thermostat is closed);

(i) connect the VMF-E1 thermostat to the VMF network (these connections will be specified more in detail in the chapter VMF NETWORKS SERIAL CONNECTIONS).

ATTENTION: the VMF-E18 thermostat boards have dip switches which MUST be set correctly based on the features of the fan coil to which the thermostat is connected. Refer to the thermostat documentation to set these dip switches correctly.

(3) Install the VMF-E2H control interface: to manage the Omnia HL fan coil directly from the unit, the VMF-E2H control interface must be fitted (refer to the specific documentation to install the control).

VMF system - Implement zone D

The figure to the left indicates which rooms make up zone D; the master unit installed in this zone is identified on VMF-E5 by the label "Kitchen".

In this case, the zone is served by two units (one master and one slave); the type of unit chosen obliges the installer to use the VMF-E1 thermostat for the master and VMF-E0 for the slave.

Material for ZONE D

An OMNIA HL unit has been selected in this zone to meet requests; the user interface intended for the zone is VMF-E2H.

The material required to implement this zone is:

Sequence of operations to be performed to install the various components:

(1) Install the Omnia HL fan coil: this unit is the MASTER fan coil of the zone; the unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation.

(2) Install the VMF-E1 thermostat: to be able to manage the fan coil via a VMF network, a VMF-E1 thermostat must be installed on the fan coil (for detailed information on installation and connection of the thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

144

(b) mount the box of the VMF-E1 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (d) connect the power supply to the VMF-E1 thermostat;

(e) connect the air probe to the VMF-E1 thermostat (the air probe is indicated as SA in the wiring diagrams);

(f) connect the water probe to the VMF-E1 thermostat (the water probe is indicated as SW in the wiring diagrams); (g) connect the VMF-E2H control interface (this connection can be made even if the box of the VMF-E1 thermostat is closed);

(h) connect the VMF-E1 thermostat to the VMF network (these connections will be specified more in detail in the chapter VMF NETWORKS SERIAL CONNECTIONS).

ATTENTION: the VMF-E18 thermostat boards have dip switches which MUST be set correctly based on the features of the fan coil to which the thermostat is connected. Refer to the thermostat documentation to set these dip switches correctly.

(3) Install the VMF-E2H control interface: to manage the Omnia HL fan coil directly from the unit, the VMF-E2H control interface must be fitted (refer to the specific documentation to install the control).

(4) Install the Omnia HL fan coil: this unit is the SLAVE fan coil of the zone; the unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation.

(5) Install the VMF-E0 thermostat: to be able to manage the SLAVE fan coil (controlled by the MASTER terminal via serial controls on a TTL network), a VMF-E0 thermostat must be installed on the fan coil (for detailed information on installation and connection of the VMF-E0 thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

(b) mount the box of the VMF-E0 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (d) connect the power supply to the VMF-E0 thermostat;

(e) connect the air probe to the VMF-E0 thermostat (the air probe is indicated as SA in the wiring diagrams);

(f) connect the water probe to the VMF-E0 thermostat (the water probe is indicated as SW in the wiring diagrams); (g) connect the VMF-E0 thermostat to the VMF-E1 thermostat of the master unit (via TTL zone network).

ATTENTION: the VMF-E0 thermostat boards have a dip switch which MUST be set correctly based on the features of the system to which the thermostat is connected; refer to the thermostat documentation to set this dip switch correctly.

19

VMF system - Implement zone

i

The figure to the left indicates which rooms make up zone E; the master unit installed in this zone is identified on VMF-E5 by the label "Day".

In this case, the zone is served by three units (one master and two slaves); the type of unit chosen obliges the installer to use the VMF-E1 thermostat for the master and two VMF-E0 for the slaves.

Material for ZONE

Three OMNIA HL units have been selected in this zone to meet requests; the master unit will be piloted by installation of a VMF-E2H control interface.

The material required to implement this zone is:

Sequence of operations to be performed to install the various components:

(1) (4) (6) Install the Omnia HL fan coil: this unit is the MASTER fan coil of the zone; the unit must be appropriately installed electrically and hydraulically following the instructions provided in the fan coil documentation.

(2) Install the VMF-E1 thermostat: to be able to manage the fan coil via a VMF network, a VMF-E1 thermostat must be installed on the fan coil (for detailed information on installation and connection of the thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

(b) mount the box of the VMF-E1 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (d) connect the power supply to the VMF-E1 thermostat;

(e) connect the air probe to the VMF-E1 thermostat (the air probe is indicated as SA in the wiring diagrams);

(f) connect the water probe to the VMF-E1 thermostat (the water probe is indicated as SW in the wiring diagrams); (g) connect the VMF-E2H control interface (this connection can be made even if the box of the VMF-E1 thermostat is closed);

(h) connect the VMF-E1 thermostat to the VMF network (these connections will be specified more in detail in the chapter VMF NETWORKS SERIAL CONNECTIONS).

ATTENTION: the VMF-E18 thermostat boards have dip switches which MUST be set correctly based on the features of the fan coil to which the thermostat is connected. Refer to the thermostat documentation to set these dip switches correctly.

(3) Install the VMF-E2H control interface: to manage the Omnia HL fan coil directly from the unit, the VMF-E2H control interface must be fitted (refer to the specific documentation to install the control).

(5) (7) Install the VMF-E0 thermostat: to be able to manage the SLAVE fan coil (controlled by the MASTER terminal via serial controls on a TTL network), a VMF-E0 thermostat must be installed on the fan coil (for detailed information on installation and connection of the VMF-E0 thermostat, refer to the specific documentation). The following is a summary of the operations required for installation of the proposed example:

(a) remove the service terminal board from the side of the fan coil;

(b) mount the box of the VMF-E0 thermostat in place of the service terminal board;

(c) using the connection cables previously detached from the terminal board, connect the thermostat with the electric motor controls (we recommend referring to the wiring diagrams of the unit to perform this connection); (d) connect the power supply to the VMF-E0 thermostat;

(e) connect the air probe to the VMF-E0 thermostat (the air probe is indicated as SA in the wiring diagrams);

(f) connect the water probe to the VMF-E0 thermostat (the water probe is indicated as SW in the wiring diagrams); (g) connect the VMF-E0 thermostat to the VMF-E1 thermostat of the master unit (via TTL zone network).

ATTENTION: the VMF-E0 thermostat boards have a dip switch which MUST be set correctly based on the features of the system to which the thermostat is connected; refer to the thermostat documentation to set this dip switch correctly.

(8) Install the advanced VMF-E5 panel: to manage the entire VMF system, the VMF-E5 system control panel must be fitted (refer to the specific documentation to install the panel).

VMF networks serial connections

(i)

VMF systems allow managing different air conditioning plant elements with just one control panel; this centralisation is provided by MODBUS serial communication which, depending on the various components of the system, can be characterised in the following types:

- (1) Serial connections via MASTER and relative control interface;
- (2) TTL connections between MASTER and SLAVE;
- (3) Main RS485 connection for communication between system and centralised control elements.

The features of each of these categories are:

(1) Serial connections via MASTER and relative control interface

This type of connection is made between the thermostat of a Master unit and the relative control device. The thermostats used as Master can be:

- VMF-E0 (only if a supervision system with VMF-E5 is not foreseen);
- VMF-E1;
- VMF-E18 (only for inverter units);
- VMF-FCL (only for FCL units).

The control devices that can be linked to these thermostats can be:

- VMF-E2;
- VMF-E2H;
- VMF-E4.

The electric connection of the user interfaces (VMF-E4) to the master thermostats must be implemented with cables having the following features:

- Shielded cable for twisted-pair transmission,
- AWG 22 24 (0.33 0.20mm² 4 poles);
- Maximum length of the connection 30m.

For detailed information on the connection between the thermostat board and control interface, refer to the specific documentation of the accessories.

(2) TTL connections between MASTER and SLAVE

This type of connection is made between the thermostat of a Master unit and that of the next Slave unit (if present). The thermostats used as Master or Slave can be:

• VMF-E0 (usable as Master only if a supervision system with VMF-E5 is not foreseen);

- VMF-E1;
- VMF-E18 (only for inverter units);
- VMF-FCL (only for FCL units).

The electric connection between a MASTER thermostat and the next SLAVE must be implemented by using a cable having the following features:

• Shielded cable AWG 22 - 3 (0.34mm² - 2 poles);

• Maximum length of the connection (by maximum length we mean the distance of the LAST Slave from the Master) 30m.

For detailed information on the connection between the thermostat board and control interface, refer to the specific documentation of the accessories.

(3) Main RS485 connection for communication between system and centralised control elements

This type of connection is made between:

• The chiller board (if supplied with relative accessory for RS485 communication);

- Accessory VMF-CRP modules (if foreseen);
- VMF-ACS electric control board for production of domestic hot water (if foreseen);

• All thermostats of the Master units (VMF-E1, VMF-E18, VMF-FCL).

The RS485 interface standard guarantees safe data transmission with high disturbance immunity at long distances (max 1000 m) between components of the system. Data transmission is differential:

- T+ (terminal 1-A of connector CN11 of VMF-E5 panel);
- T- (terminal 2-B of connector CN11 of VMF-E5 panel);
- GND (terminal 3-GND of connector CN11 of VMF-E5 panel).

For proper communication, the RS485 bus must respect the type of connection carried below:

For detailed information on the connection between the thermostat board and control interface, refer to the specific documentation of the accessories.

6795773_00

24

GB

Connection		n	— / 11		
	FROM		то	Iype of cable	Notes on the connection
A	MODU-485A	в	VMF CRP (1)	3-pole cable + shield 0.34mm² (AWG22)	
В	VMF CRP (1)	C	VMF CRP (2)	3-pole cable + shield 0.34mm² (AWG22)	
C	VMF CRP (2)	D	VMF-ACS	3-pole cable + shield 0.34mm² (AWG22)	
D	VMF-ACS	E	VMF-E1	3-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles; the two terminals to power the VMF-E5 are not used in this example.
E	VMF-E1	F	VMF-E2H	4-pole user interface connection cable (AWG22)	Supplied with VMF-E2H thermostat as per standard.
E	VMF-E1	G	VMF-E1	3-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles; the two terminals to power the VMF-E5 are not used in this example.
G	VMF-E1	Э	VMF - E4	Shielded cable for twisted-pair transmission 0.33~0.20mm ² (AWG22~24)	
G	VMF-E1	1	VMF-E1	3-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles; the two terminals to power the VMF-E5 are not used in this example.
	VMF-E1	L	VMF-E2H	4-pole user interface connection cable (AWG22)	Supplied with VMF-E2H thermostat as per standard.
	VMF-E1	M	VMF - EO	2-pole cable + shield 0.34mm ² (AWG22)	TTL local serial line.
1	VMF-E1	N	VMF-E18	3-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles; the two terminals to power the VMF-E5 are not used in this example.
N	VMF-E18	0	VMF - E4	Shielded cable for twisted-pair transmission 0.33~0.20mm ² (AWG22~24)	
N	VMF-E18	P	VMF-E1	3-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles; the two terminals to power the VMF-E5 are not used in this example.
P	VMF-E1	٩	VMF-E2H	4-pole user interface connection cable (AWG22)	Supplied with VMF-E2H thermostat as per standard.
P	VMF-E1	®	VMF - EO	2-pole cable 0.34mm ² (AWG22)	TTL local serial line.
R	VMF - EO	S	VMF - EO	2-pole cable 0.34mm ² (AWG22)	TTL local serial line.
P	VMF-E1	(7)	VMF-E5	5-pole cable + shield 0.34mm² (AWG22)	The collector for the RS485 connection of the VMF-E1 thermostat has 5 poles: three for the signal and two for the power supply.

After the system has been installed and the components connected, the software parameters required to activate the system via interface of the advanced VMF-E5 panel are set; these parameters are contained in a menu protected by a password for the installer.

ATTENTION: an incorrect setting of the parameters in the assistance menu can cause the entire system to malfunction; these parameters can ONLY be modified by installation and technical assistance personnel.

• Browsing and choice of ASSISTANCE menu

• Enter the assistance menu (Password 202)

• Setting number of MASTER fan coils present in system

• Enable or disable the automatic changeover function of the fan coils

• Procedure for self-addressing MASTER fan coils of the system

• Force visualization of an address

After each MASTER of the system has been assigned with a serial address, it can be checked by the forced visualization function on the terminal. With the specified address, this function allows the serial address to be viewed on the master by means of a series of LED flashes on the control interface (for further information on light indication coding, refer to instructions of the thermostats on the fan coils). To activate this procedure, it is necessary to:

(1) Enter modification mode by pressing the ⓒ key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the address of the master upon which the visualization of its address must be forced; the addresses which can be viewed go from 6 to 70 (if the address 00 is used, the command is given to ALL MASTERS of the system).

(3) To start forced visualization of the address on the terminal, press the (10) key; it will change from ON to OFF (pressing this key again will stop the procedure and will change the label on the key once again).

After having completed the checks or verifications possible with this function, it will be possible to:

- Pass on to the following window by pressing the B key.
- Go back to the previous window by pressing the A key.
- Press the E key to return to the selection of the menus.

Visualization of systems status

• Set the presence of the VMF-ACS accessory module

• Set management of simultaneous loads

This parameter specifies whether the system allows simultaneous activation of chiller loads (compressor plus possible supplementary electric resistance inside the chiller) and those linked to domestic hot water (electric resistance in DHW storage tank); to set this value it is necessary to:

(1) Enter modification mode by pressing the ⓒ key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the setting; the settings of this function can be:

- ON (simultaneous loads allowed);
- OFF (simultaneous loads denied).

(3) Press the ⁽²⁾ key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the (B) key.
- Go back to the previous window by pressing the (A) key.
- Press the (D) key to return to the selection of the menus.

• Set delay in switching on electric resistance

This function allows to set the control of the correct operation in domestic hot water production; once the chiller starts to produce domestic hot water, this control checks the trend of the temperature inside the DHW storage tank; if this temperature does not increase or decrease for the period of time specified in this parameter, the system will assume a problem with the heat pump and will activate the supplementary resistance on the DHW storage tank to meet the domestic hot water demand (to deactivate this control, the time must be set at 0); to set this value it is necessary to:

(1) Enter modification mode by pressing the (c) key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the setting of the minutes after which to activate the supplementary resistance on the DHW storage tank.

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the B key.
- Go back to the previous window by pressing the A key.
- Press the D key to return to the selection of the menus.

• Set loading priority in domestic hot water production

The VMF systems can have installations with two electric resistances, one on the heat pump and another in the DHW storage tank; this function allows to establish which of these resistances is used during domestic hot water production; to set this value, it is necessary to:

(1) Enter modification mode by pressing the ⓒ key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the setting; the settings of this function can be:

- E R.I. (uses electric resistance on unit);
- I R.A.S. (uses electric resistance on DHW storage tank).

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the (B) key.

- Go back to the previous window by pressing the (A) key.

- Press the (D) key to return to the selection of the menus.

ATTENTION: this function CANNOT be used when: • the subsequent parameter is set as "multi-valve" system;

• the heat pump installed on the VMF system is not managed by a Moducontrol board.

• Set the type of system managed by VMF-ACS accessory

This function allows to set the type of system on which the VMF-ACS accessory will be used; naturally this parameter is only considered if the system foresees use of this accessory (and therefore management of domestic hot water is included in the system); two types of systems can be managed by the VMF-ACS accessory (SINGLE VALVE or MULTI-VALVE), for further information on the type of systems, refer to the following diagrams; to set this value it is necessary to:

(1) Enter modification mode by pressing the ⓒ key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the setting; the settings of this function can be:

- SINGLE VALVE;
- MULTI-VALVE.

(3) Press the ⓒ key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the ^(B) key.
- Go back to the previous window by pressing the (A) key.
- Press the 0 key to return to the selection of the menus.

ATTENTION: to implement MULTI-VALVE systems, the chiller must have a Moducontrol board.

SINGLE VALVE system - System 1 type:

SINGLE VALVE system - System 2 type:

SINGLE VALVE system - System 3 type:

MULTI-VALVE system:

• Set the multi-function output on the VMF-ACS accessory:

This allows to set the function to be assigned to the multifunction output available on the VMF-ACS accessory; for further information on this output, refer to the VMF-ACS accessory manual in section "Multi-function output connection"; to set this value it is necessary to:

(1) Enter modification mode by pressing the (c) key; after this key has been pressed, the current setting will be highlighted.

(2) Press the (A) or (B) key to modify the setting; the settings of this function can be:

• DHW ALARM PRESENCE (the contact closes in the presence of an alarm inherent to DHW);

• DOMESTIC HOT WATER RESISTANCE ON/OFF (the contact closes when the supplementary resistance present in the DHW storage tank is activated);

• DOMESTIC HOT WATER CYCLE ON/OFF (the contact remains closed during the entire period of time in which the system is producing DHW);

• ANTI-LEGIONELLA CYCLE ON/OFF (the contact remains closed during the entire time period of the anti-legionella cycle);

• FAN COIL THERMOSTATS ON/OFF (the contact closes if at least one thermostat of a fan coil requests to function);

 SUPPLEMENTARY RESISTANCE ON/OFF (the contact closes when the supplementary resistance/boiler is active);
 HEAT PLIMP ALARM (the contact closes when the heat

• HEAT PUMP ALARM (the contact closes when the heat pump is in alarm conditions).

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the B key.
- Go back to the previous window by pressing the (A) key.
- Press the (D) key to return to the selection of the menus.

• Set the band on heating setting for ECONOMY mode

• Set the band on cooling setting for ECONOMY mode

Set heating temperature for chiller

In winter, the user will set the desired room air temperature by means of the thermostat on the master fan coils. To reach this temperature, the unit will produce hot water at the temperature set by the installer indicated in this parameter (between 30.0 and 70.0°C); to set this value it is necessary to:

(1) Enter modification mode by pressing the ^(C) key; after this key has been pressed, the current band value will be highlighted.

(2) Press the (A) or (B) key to modify the heating work setting of the chiller.

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the (B) key.
- Go back to the previous window by pressing the (A) key.
- Press the (D) key to return to the selection of the menus.

Set cooling temperature for chiller

In summer, the user will set the desired room air temperature by means of the thermostat on the master fan coils. To reach this temperature, the unit will produce cold water at the temperature set by the installer indicated in this parameter (between 00.0 and 20.0°C); to set this value it is necessary to:

(1) Enter modification mode by pressing the (c) key; after this key has been pressed, the current band value will be highlighted.

(2) Press the (A) or (B) key to modify the cooling work setting of the chiller.

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the ^(B) key.
- Go back to the previous window by pressing the (A) key.
- Press the (D) key to return to the selection of the menus.

• Set frequency for dynamic variation of setting in ECONOMY mode

• Set the extent for decrease of setting in ECONOMY mode

• Set the extent for increase of setting in ECONOMY mode

If economy mode has been set in the system, the work setting will be varied dynamically based on the actual system demand; this variation is performed every given amount of time, modifying the setting by increasing it or decreasing it by a certain value (while remaining within the limits described by the bands set for Economy mode in heating and cooling); this parameter determines by how much the work setting is increased if the control on the system requires it (value between 0.1 and 2.0°C); to set this value it is necessary to:

(1) Enter modification mode by pressing the ^(C) key; after this key has been pressed, the current band value will be highlighted.

(2) Press the (A) or (B) key to modify the band value to be applied to the heating work setting during Economy mode.

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the B key.
- Go back to the previous window by pressing the (A) key.
- Press the D key to return to the selection of the menus.

• Set the compensation temperature setting based on external air for comfort mode

If comfort mode has been set in the system, the work setting can be varied automatically based on the external air temperature; this variation will follow a compensation curve (a specific curve for each season) defined by the installer in this window; this window displays the following information:

- External air temperature value (1) (1): indicates the minimum external air temperature value which the compensation function refers to; depending on the functioning mode (heating or cooling) this value will be connected to the maximum or minimum produced water setting, as indicated in the curves below.

- Work setting value (1) (2): indicates the maximum or minimum work setting value (depending on the heating or cooling functioning mode) connected to the MINIMUM external air value.

- External air temperature value (2) (3): indicates the maximum external air temperature value which the compensation function refers to; depending on the functioning mode (heating or cooling) this value will be connected to the minimum or maximum produced water setting, as indicated in the curves below.

- Work setting value (2) (4): indicates the minimum or maximum work setting value (depending on the heating or cooling functioning mode) connected to the MAXIMUM external air value.

Compensation label (): indicates whether the data displayed refers to cooling or heating compensation:
 COOLING compensation (*);

- HEATING compensation (*).

From this window it is possible to:

(1) Select heating or cooling compensation: by pressing the key (D) the data displayed will pass from that referred to heating compensation to that referred to cooling; this data is identified by the relative labels ((5)).

(2) Set the values for the compensation function: pressing the key (c) will allow you to enter the modification mode and the value (1) will be displayed; by pressing the keys (A) or (B) it will be possible to modify the value, while pressing the key (c) will confirm the choice, automatically selecting the value (2), which can be modified the same way as the previous value; whenever a value is confirmed by pressing the key (c), the next value will be selected until all four values have been entered.

(3) Activate or deactivate the compensation function: to activate or deactivate compensation (both heating and cooling, as it is not possible to activate or deactivate them individually), press the key (E); when this key is pressed, the symbol highlighted above it will change, according to one of the following states: - (O) compensation DISABLED;

- (0) compensation ENABLED.

(3) Pass on to the next window: to go to the next window of this menu, press the key (\mathbb{B}) .

(4) Go back to the previous window: to go back to the previous window of this menu, press the key (A).

(5) Exit this window:

Press the key (F) to return to the selection of the USER menus.

The proposed example hypothesises the use of Economy mode, and therefore the data of this function does not affect the system in the example.

• Set the domestic hot water temperature for the chiller

• Set the ON/OFF band on the domestic hot water production setting

• Set maximum value for domestic hot water production

· Set the type of chiller/heat pump board

This parameter specifies the type of board mounted on the chiller or heat pump of the VMF system; to set this value it is necessary to:

(1) Enter modification mode by pressing the (c) key; after this key has been pressed, the current differential value will be highlighted.

(2) Press the (A) or (B) key to modify the type of board mounted on the chiller/heat pump; the types of control available are:
NO CHILLER (the VMF system has no chiller);

• MODU_CONT (the VMF system has a chiller with a Moducontrol board);

• GR3 (the VMF system has a chiller with a GR3 board);

• PCO2 (the VMF system has a chiller with a PCO series board, or else another Aermec board not included in the previous ones).

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the B key.
- Go back to the previous window by pressing the A key.
- Press the (D) key to return to the selection of the menus.

• Set the chiller switch off delay after conclusion of system demand

• Set the presence of the VMF-CRP recovery unit/ boiler module

If the VMF system manages a boiler or one or more heat recovery units, a VMF-CRP module must be installed to manage them; this parameter specifies whether a VMF-CRP expansion board for the boiler and recovery units is foreseen in the system (for further information on the type and specific settings of each expansion module, see the VMF-CRP accessory documentation); to set this value it is necessary to:

(1) Enter modification mode by pressing the C key; after this key has been pressed, the current band value will be highlighted.

(2) Press the (A) or (B) key to modify the value; the settings of this function can be:

• ON (presence of VMF-CRP module for boiler and recovery unit);

• OFF (no VMF-CRP module for boiler and recovery unit).

(3) Press the (c) key to confirm the value entered; once this key has been pressed, the current setting will be highlighted normally, thus indicating that the modification procedure has concluded.

After the data has been entered, it will be possible to:

- Pass on to the following window by pressing the ^B key.
- Go back to the previous window by pressing the A key.
- Press the 0 key to return to the selection of the menus.

• Set the management mode of the installed heat recovery units

If a heat recovery unit is installed in the system, piloted by the relative VMF-CRP expansion board, it will be possible to set the logic with which this component is managed; this window displays the following information:

- Presence of accessory VMF-VOC (1): automatically indicates whether an accessory VMF-VOC probe (to establish air quality) has been connected to the additional VMF-CRP module for recovery unit management.

- Recovery unit index (2): indicates which recovery unit the data and settings currently displayed refer to; the VMF-CRP module of the boiler and recovery units can manage up to 3 different recovery units.

- Hourly program (3): indicates which hourly program to associate to the recovery unit operation (for further information on hourly programs, refer to the VMF-E5 panel user manual);

- Air quality value (VOC) (4): if selected, it indicates that the value in percentage (5) represents the value currently read by the VOC probe installed on the system.

- Air quality limit for recovery unit activation ((5)): if the icon ((4)) is not selected, it indicates the threshold beyond which to activate the recovery unit; this threshold is only used if a VMF-VOC probe is installed in the system (keep in mind that the best air quality corresponds to 0%, while if the value increases it means that carbon dioxide is increasing).

From this window it is possible to:

(1) Associate an hourly program to the recovery unit: pressing the (c) key will select the field (3); by pressing the (A) or (B) key, the value can be changed; press (c) to confirm the set value, moving the selection to parameter (5).

(2) Set the activation threshold of the recovery unit with VOC: pressing the (c) key will select the field (3), press (c) to confirm the set value, moving the selection to parameter (5); at this point by pressing the (A) or (B) key the value can be modified; press (c) to confirm the set value, bringing the window to the visualization status (no value selected).

(3) View the reading of the VMF-VOC probe: to view the value currently read by the VMF-VOC probe (if installed), press the (F) key, the icon (④) will be highlighted and the value (⑤) will represent the current value read by the VOC probe; pressing the (F) key again will return the window to the normal display.

(4) Select a recovery unit: if several recovery units are installed in the system, by pressing the (E) or (D) key it will be possible to pass from one recovery unit to another; the recovery unit which the displayed data refers to is indicated by the label (2).

(5) Pass on to the next window: to go to the next window of this menu, press the key (B).

(6) Go back to the previous window: to go back to the previous window of this menu, press the key (A).

(7) Exit this window: press the (G) key to return to the selection of the menus.

• Set the number of pumps managed by the VMF system

Associate each fan coil to its own pump

To manage activation of the pumps, they must be associated to the master fan coils of the zone they serve; this window displays

- Index of the zone of reference ((): indicates which zone (and therefore which master fan coil) the currently displayed

- Zone label (2): indicates the label (set by the user on the last page of the fan coil menu; for further information, see the VMF-E5 panel user manual) associated to the master fan coil

- Pump number (3): if the system foresees its management, the indicates which pump must be associated to the master fan coil currently displayed in points (1) and (2)

(1) Associate a specific pump to a master fan coil: this operation

• Select the master fan coil, using the (E) or (D) key to browse the

• Select a pump to associate to the selected fan coil, press (C) to select the field (3), press the A or B key to select the pump number to be associated and finally confirm by pressing (C) once

Naturally these two procedures must be performed for ALL master fan coils of the system in order to make sure that each zone is

(2) Go back to the previous window: to go back to the

(3) Exit this window: press the (G) key to return to the selection

be managed by one pump and therefore both masters must be associated to the same pump (in our example, pump 1); while each of the other zones will be associated to a specific pump; to summarise,

I dati tecnici riportati nella presente documentazione non sono impegnativi. AERMEC S.p.A. si riserva la facoltà di apportare in qualsiasi momento tutte le modifiche ritenute necessarie per il miglioramento del prodotto.

Les données mentionnées dans ce manuel ne constituent aucun engagement de notre part. Aermec S.p.A. se réserve le droit de modifier à tous moments les données considérées nécessaires à l'amelioration du produit.

Technical data shown in this booklet are not binding. Aermec S.p.A. shall have the right to introduce at any time whatever modifications deemed necessary to the improvement of the product. Im Sinne des technischen Fortsschrittes behält sich Aermec S.p.A. vor, in der Produktion Änderungen und Verbesserungen ohne Ankündigung durch-zuführen.

Los datos técnicos indicados en la presente documentación no son vinculantes. Aermec S.p.A. se reserva el derecho de realizar en cualquier momento las modificaciones que estime necesarias para mejorar el producto.

AERMEC S.p.A. I-37040 Bevilacqua (VR) - Italia Via Roma, 996 - Tel. (+39) 0442 633111 Telefax (+39) 0442 93730 - (+39) 0442 93566 www.aermec.com - info@aermec.com