

EN

MULTIPURPOSE UNIT

MULTIPURPOSE UNITS FOR 2 4-PIPE SYSTEMS - Technical installation manual

NRP 0800-1800

Dear Customer,

Thank you for choosing an AERMEC product. This product is the result of many years of experience and indepth engineering research, and it is built using top quality materials and advanced technologies. In addition, the CE mark guarantees that our appliances fully comply with the requirements of the European Machinery Directive in terms of safety. We constantly monitor the quality level of our products, and as a result AERMEC products are synonymous with Safety, Quality, and Reliability.

The data may be subject to modifications deemed necessary for improving the product at any time and without forewarning.

> Thank you again. AERMEC S.p.A

AERMEC S.p.A. reserves the right to make any modifications considered necessary to improve its products at any moment and is not obliged to add these modifications to machines that have already been manufactured, delivered or are under construction.

1.	Description of the unit	
1.1.	For 2-pipe systems	. 6
1.2.	For 4-pipe systems	. 6
2.	Configurator	7
3.	Basic operating layouts for 2-pipe system	8
3.1.	Cold water production only to system	. 8
3.2.	Hot water production only to system	. 8
3.3.	2 Circuits to produce hot water only to dhw	. 9
3.4.	2 Circuits to produce cold water to system and hot water to dhw	. 9
3.5.	Circuit for producing hot water to system circuit for producing	
	hot water to dhw	10
4.	Basic operating layouts for 4-pipe system	
4.1.	Cold water production only to system	10
4.2.	Hot water production only to system	
4.3.	Simultaneous hot and cold water production to system	11
5.	Description of components	
5.1.	Cooling circuit	12
5.2.	Structure and fans	
5.3.	Standard hydraulic circuit	
5.4.	Water features	
5.5.	Control and safety components	
5.6.	Electric control board	
6.	Accessories	14
6.1.	Mechanical accessories	14
6.2.	Electric accessories	
7.	Technical data	15
8.	Operational limits	18
8.1.	Cooling mode	
8.2.	Heating mode	
9.	Correction factors for data different to nominal in cooling mode	
9.1.	Yields and absorption different to nominal	
10.	Correction factors for data different to nominal in heating mode	
10.1.	Yields and absorption different to nominal	
11.	Recovered heating capacity correction coefficients	
12.	Total pressure drops 2 4 pipe units	
12.1.	System side cold water production (2 pipes)	
12.3.	When operating with dhw side recovery (2 pipes)	
	system side hot water production (4 pipes)	21
12.2.	System side hot water production (2 pipes)	
13.	Useful head pressures 2 4-pipe system	
13.1.	Low head pressure in cooling mode (system side)	
13.3.	Dhw side low head pressure pumps (2 pipes)	
	heating side (4 pipes)	22
13.4.	Dhw side high head pressure pumps (2 pipes)	
	heating side (4 pipes)	22
13.2.	High head pressure in cooling mode (system side)	
14.	Ethylene glycol solution	
14.1.	How to interpret glycol curves	
15.	Expansion vessel calibration	
16.	Minimum water content	
17.	Partialisations	
18.	Sound data	
19.	Calibrations of safety and control parameters	
	•	

Ε	Ν

20.	General warnings
20.1.	Preservation of the documentation
20.2.	Installation
20.2.	Warranty
20.3.	Warnings regarding safety and installation standards
20. . 21.	Product identification
22.	Receipt of the product and installation
22.1.	Receipt and handling
22.2.	Handling the machine:
22.3.	Selection and place of installation
23.	Weights and barycentres
24.	Dimensions hydraulic connections
24.1.	NRP 0800 ÷ 1000 minimum technical spaces
24.3.	NRP 0800 ÷ 1000 hydraulic connections position vers. 00
24.2.	NRP 0800 ÷ 1000 hydraulic connections position vers. P1P4 R1R4 31
24.4.	NRP 1250 minimum technical spaces
24.5.	NRP 1250 hydraulic connections position vers. 00
24.6.	NRP 1250 hydraulic connections position vers. P1P4 R1R4 32
24.7.	NRP 1400 - 1500 minimum technical spaces
24.8.	NRP 1400 - 1500 hydraulic connections position vers. 00
24.9.	NRP 1400 - 1500 hydraulic connections position vers. P1P4 R1R4 33
24.10.	NRP 1650 - 1800 minimum technical spaces
24.11.	NRP 1650 - 1800 hydraulic connections position vers. 00
24.12.	NRP 1650 - 1800 hydraulic connections position vers. P1P4 R1R434
25.	Basic 2-pipe system hydraulic circuits35
25.1.	Hydraulic circuit inside and outside "00" version NRP 35
25.2.	Hydraulic circuit inside and outside NRP version "with P1P4
	R1R4 pumps"
26.	Basic 4-pipe system hydraulic circuits37
26.1.	Internal and external hydraulic circuit to NRP "00" 37
26.2.	Hydraulic circuit inside and outside the NRP "P1P4 - R1R4"
	(with cooling and heating side pumps) 38
26.3.	System loading
26.4.	System loading
27.	Electric connections40
27.1.	Electric data table 40
27.2.	Preparation for commissioning
27.3.	Start -up
27.4.	Machine commissioning 41
28.	Electric power connection to the electrical mains41
29.	Control and commissioning41
30.	Operating features
30.1.	Set-point in cooling mode
30.2.	Set-point in heating mode
30.3.	Compressor start-up delay
30.4.	Circulation pumps
30.5.	Anti-freeze alarm
30.6. 31.	Water flow rate alarm
31. 31.1.	Switch-on and use of unit
31.1. 32.	Accessory connections
52.	ALLESSON Y LUMMELHONS

EN

NRP 0800-1800

AERMEC S.p.A. 37040 Bevilacqua (VR) Italy–Via Roma, 996 Tel. (+39) 0442 633111 Telefax 0442 93730–(+39) 0442 93566 www.aermec. com - info @ aermec. com

NRP

SERIAL NUMBER	
DECLARATION OF CONFORMITY	We, the undersigned, hereby declare under our own responsibility that the assembly in question, defined as follows:
NAME	NRP
ТҮРЕ	MULTIPURPOSE AIR/WATER
MODEL	
To which this declaration refers, complies	s with the following harmonised standards:
IEC EN 60335-2-40	Safety standard regarding electrical heat pumps, air conditioners and dehumidifiers.
IEC EN 61000-6-1 IEC EN 61000-6-3	Immunity and electromagnetic emissions for residential environments.
IEC EN 61000-6-2 IEC EN 61000-6-4	Immunity and electromagnetic emissions for industrial environments.
EN378	Refrigerating system and heat pumps - Safety and environmental requirements.
UNI EN 12735	Seamless, round copper pipes for air conditioning and refrigeration.
UNI EN 14276	Pressurised equipment for cooling systems and heat pumps.

Thereby, compliant with the essential requirements of the following directives:

- LVD Directive: 2006/95/CE

- Electromagnetic Compatibility Directive 2004/108/CE.

- Machinery directive 2006/42/CE

- PED Directive regarding pressurised devices 97/23/CE

The product, in agreement with Directive 97/23/EC, satisfies the Total quality Guarantee procedure (form H) with certificate no. 06/270-QT3664 Rev. 6 issued by the notified body n.1131 CEC via Pisacane 46 Legnano (MI) - Italy

The person authorised to draw-up the technical file is: Massimiliano Sfragara - 37040 Bavilacqua (VR) Italy - Roma, 996

Bevilacqua

09/01/2012

Marketing Manager Signature

King : Such:

Standards complied with WHEN DESIGNING and CONSTRUCTING the unit:

SAFETY

- 1. Machinery directive 2006/42/EC
- 2. Low voltage directive LVD 2006/95/EC
- 3. Electromagnetic compatibility directive EMC 2004/108/EC
- Directive regarding pressurised devices PED 97/23/EC, EN 378,
- 5. UNI12735, UNI14276

ELECTRIC PART

- 1. IEC EN 60335-2-40,
- 2. IEC EN 61000-6-1/2/3/4

ACOUSTIC PART

1.

ISO DIS 9614/2 (intensimetric method)

PROTECTION RATING

REFRIGERANT GAS

This unit contains fluoride gases with greenhouse effect covered by the Kyoto Protocol. Maintenance and disposal must only be performed by qualified staff, in compliance with standards in force.

1. DESCRIPTION OF THE UNIT

Multipurpose **OUTDOOR** units for 2 or 4 pipe systems, especially designed for simultaneous, autonomous production of **cold** and **hot** water.

AVAILABLE VERSIONS

1.1. FOR 2-PIPE SYSTEMS

The multipurpose 2-pipe units have been made to respond to the demands of hotels, where there is a high cold/hot water and DHW demand throughout the year.

The operating modes are:

SUMMER OPERATION

- 1. Cold water production at system
- 2. Production of DHW with use of total recovery device

WINTER OPERATION

- 3. Heat pump supplying the system.
- 4. Heat pump for DHW.

1.2. FOR 4-PIPE SYSTEMS

The multipurpose 4-pipe units have been made to respond to the demands of shopping centres, offices or facilities with large windows, where there can be the simultaneous demand for hot and cold water with a system which does not require season changeover and therefore is a valid alternative to traditional systems based on the chiller-boiler combination. The microprocessor control logic mounted ensures perfect satisfaction of heating and cooling loads. The operating modes are:

PRODUCTION OF COOLED WATER ONLY

The multipurpose unit acts as a classical chiller: cool water to the system and condensation heat disposal outside through finned coils.

PRODUCTION OF HOT WATER ONLY

The multipurpose unit acts as a heat pump, exploiting the heat of the outside air it makes use of the finned coil (evaporator) to raise the temperature of the water to be sent to the system through a plate heat exchanger (condenser). The main difference with respect to traditional heat pumps with cycle inversion is that the heated water is produced in an exchanger different to that used for the production of cold water. This is to keep the heating and cooling sections necessary for 4-pipe systems well distinguished.

COMBINED PRODUCTION

If the utility requires simultaneous hot and cold water, the unit acts as a water/water heat pump, controlling condensation and evaporation on two distinct plate heat exchangers associated to the circulation of cold and hot water in the system.

It automatically changes from one configuration to the other (managed by on-board microprocessor) to optimise the energy spent depending on the demand

by the utility.

Maximum reliability

Multi-circuit unit (from two to four depending on the model) designed to provide maximum efficiency both with full load and partial loads, guaranteeing operating continuity should one of the circuits stop to facilitate maintenance.

Having several compressors ensures control of more capacity steps yielded in both modes.

Built-in hydronic kit

Which encloses the main hydraulic components it is available in different configurations with single pump or with reserve pump, with high or low head pressure (see configuration).

NRP 0800-1800

2. CONFIGURATOR

Field	Description		
1,2,3	NRP		
4,5,6	SIZE		
	080 - 090 - 100 - 125 - 140 - 150 - 165 - 180		
	-	_	
7	START-UP DELAY		
	0	_	
8	VERSION	_	
	High efficiency		
	Silenced high efficiency		
		_	
9	SYSTEM TYPE 1		
2	Two pipes		
4	Four pipes		
10	COILS		
	Aluminium		
	Copper Tipped copper		
	Tinned copper In painted aluminium-copper (epoxy powders)		
v			
11	FANS	_	
SDgr	Standard		
	Updated inverters	NRP	
12	POWER SUPPLY	0800-1000	
SDgr	400V/3/50Hz with magnet circuit breakers	i	
2	500V/3/50Hz with magnet circuit breakers	system hydronic unit	SD
			P:
13,14	SYSTEM SIDE HYDRONIC KIT	_ r	P
	Without storage tank	syst	P
	Low head pressure pump system side		P4
	Low head pressure pump reserve pump system side		
	High head pressure pump system side		
P4	High head pressure pump reserve pump system side	NRP	
15,16	DHW SIDE / SYSTEM SIDE HYDRONIC KIT ²	1250-1800	
	Without Pumps		
	Low head pressure pump DHW side		SD
	Low head pressure pump reserve pump DHW side	hydr	P
	High head pressure pump DHW side	ystem hydronic unit	P
	High head pressure pump reserve pump DHW side	yste	P
		- S	D

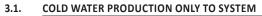
NRP 0800-1000	POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS recovery hydronic unit					
J		SDgr	R1	R2	R3	R4
system hydronic unit	SDgr	ok	ok	na	ok	na
nit d	P1	ok	ok	na	ok	na
e n	P2	ok	ok	na	ok	na
/ste	P3	ok	ok	na	ok	na
S	P4	ok	ok	na	ok	na

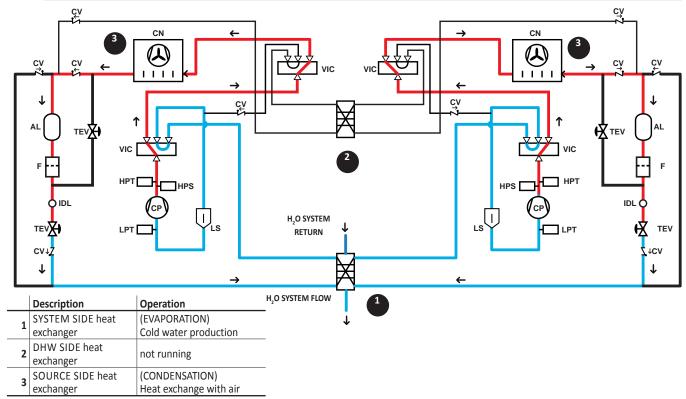
	NRP	POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS					
	1250-1800	recovery hydronic unit					
-	,c		SDgr	R1	R2	R3	R4
	system hydronic unit	SDgr	ok	ok	ok	ok	ok
		P1	ok	ok	ok	ok	ok
		P2	ok	ok	ok	ok	ok
		P3	ok	ok	ok	ok	ok
	S	P4	ok	ok	ok	ok	ok

2 DHW SIDE/SYSTEM SIDE

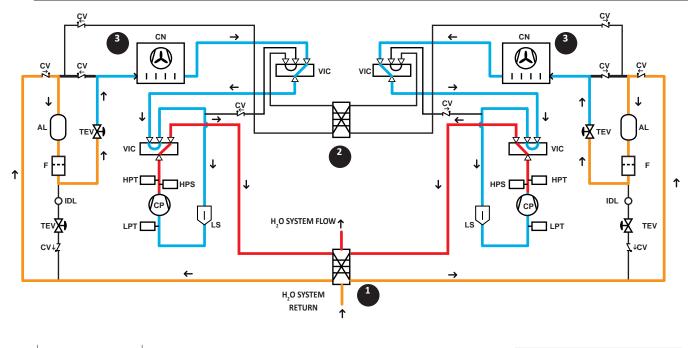
DHW side, production of domestic hot water, in 2-pipe systems. System side, production of hot water, in 4-pipe systems.

Reading key

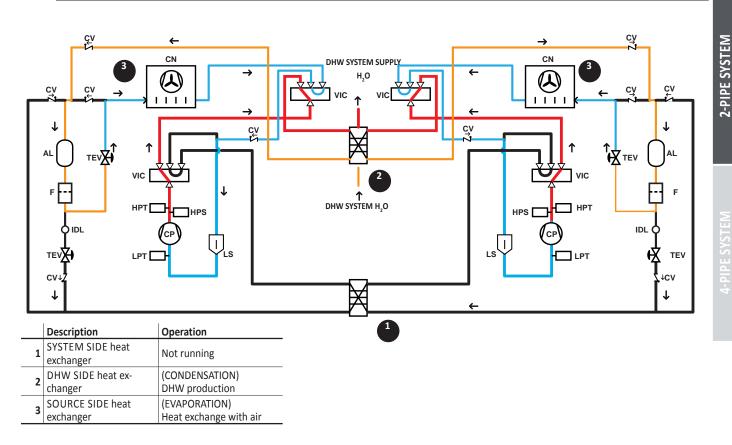

1. The configuration desired must be specified when ordering

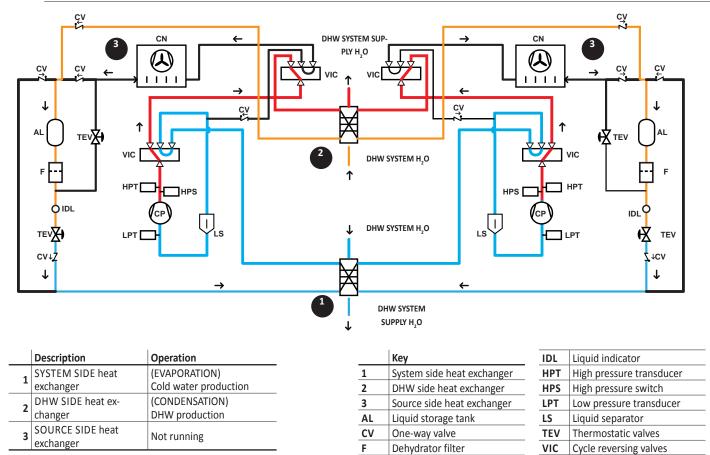

na Not available

3.


2-PIPE SYSTEM

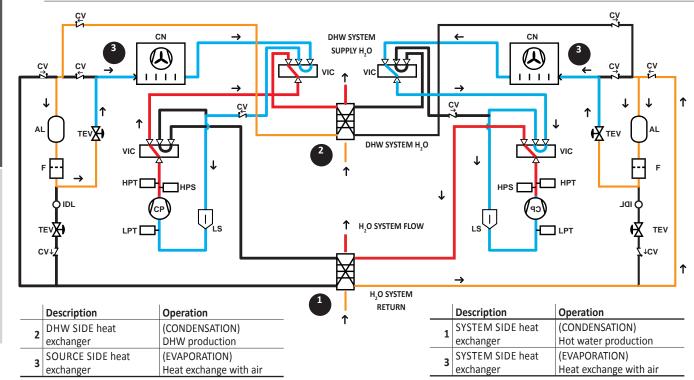
BASIC OPERATING LAYOUTS FOR 2-PIPE SYSTEM


3.2. HOT WATER PRODUCTION ONLY TO SYSTEM


	Description	Operation		Key	IDL	Liquid indicator
1	SYSTEM SIDE heat	(CONDENSATION)	1	System side heat exchanger	НРТ	High pressure transducer
	exchanger	Hot water production	2	DHW side heat exchanger	HPS	High pressure switch
2	DHW SIDE heat	not running	3	Source side heat exchanger	LPT	Low pressure transducer
	exchanger		AL	Liquid storage tank	LS	Liquid separator
3	SOURCE SIDE heat exchanger	(EVAPORATION) Heat exchange with air	CV	One-way valve	TEV	Thermostatic valves
	excitatiget	neat exchange with an	F	Dehydrator filter	VIC	Cycle reversing valves

Aermec code 5806765_00 12.02

3.3. 2 CIRCUITS TO PRODUCE HOT WATER ONLY TO DHW


3.4. 2 CIRCUITS TO PRODUCE COLD WATER TO SYSTEM AND HOT WATER TO DHW

EN

2-PIPE SYSTEM

3.5. CIRCUIT FOR PRODUCING HOT WATER TO SYSTEM | CIRCUIT FOR PRODUCING HOT WATER TO DHW

4. **BASIC OPERATING LAYOUTS FOR 4-PIPE SYSTEM** COLD WATER PRODUCTION ONLY TO SYSTEM

cy CN ← CN cv c٧ C۷ Т t сv c٧ ↑ AL **K** TEV TEVH VIC НРТ 🔂 НРТ HPS HPS J IDL H₂O SYSTEM TEV LS I S LPT LPT RETURN cv↓Z ↓ ← H,O SYSTEM FLOW L Description Operation (EVAPORATION) SYSTEM SIDE heat ex-**IDL** Liquid indicator Key 1 changer Cold water production 1 System side heat exchanger HPT High pressure transducer 2 DHW SIDE heat exchanger not running 2 DHW side heat exchanger HPS High pressure switch SOURCE SIDE heat ex-(CONDENSATION) **3** Source side heat exchanger LPT Low pressure transducer 3 Heat exchange with air changer AL Liquid storage tank LS Liquid separator CV One-way valve **TEV** Thermostatic valves F Dehydrator filter VIC Cycle reversing valves

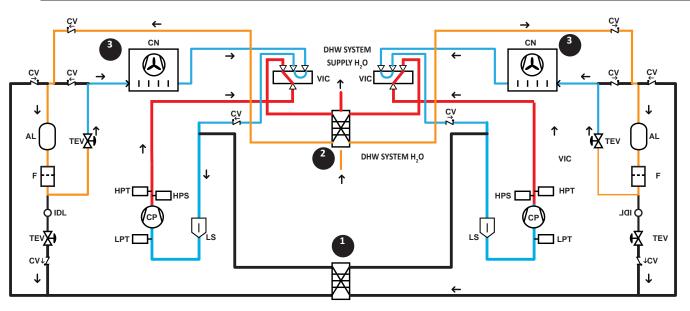
4.1.

Aermec code 5806765 00 12.02

C١

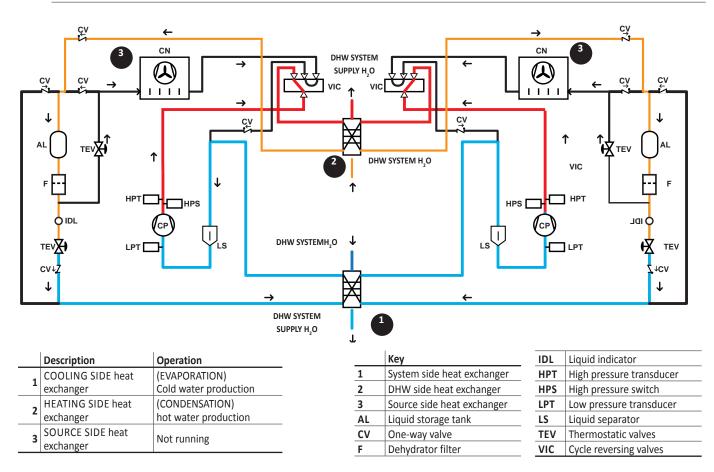
T

AL


F

TEV

↓CV


↓

4.2. HOT WATER PRODUCTION ONLY TO SYSTEM

	Description	Operation
1	COOLING SIDE heat exchanger	Not running
2	HEATING SIDE heat exchanger	(CONDENSATION) hot water production
3	SOURCE SIDE heat exchanger	(EVAPORATION) Heat exchange with air

4.3. SIMULTANEOUS HOT AND COLD WATER PRODUCTION TO SYSTEM

5. DESCRIPTION OF COMPONENTS

5.1. COOLING CIRCUIT

SCROLL COMPRESSORS

Hermetic scroll rotary compressors. All compressors come with casing resistance, electronic thermal protection with centralised manual rearm and two-pole electric motor.

SYSTEM SIDE COOLING/HEATING EXCHANGER

Braze welded AISI 316 steel plate exchanger, insulated externally with closed cell neoprene anti-condensation material. When the unit is not running, an electric resistance is used for protection against the formation of ice inside.

5.1.1. WATER FEATURES

PH	6-8
Electric conductivity	Less than 200 mV/cm (25°C)
Chloride ions	Less than 50 ppm
Sulphuric acid ions	Less than 50 ppm
Total iron	Less than 0.3 ppm
Alkalinity M	Less than 50 ppm
Total hardness	Less than 50 ppm
Sulphur ions	none
Ammonia ions	None
Silicone ions	Less than 30 ppm

DHW SIDE EXCHANGER (2 pipes) SYSTEM HEATING SIDE (4 pipes)

Braze welded AISI 316 steel plate exchanger, insulated externally with closed cell neoprene anti-condensation material. When the unit is not running, an electric resistance is used for protection against the formation of ice inside.

SOURCE SIDE EXCHANGER

Finned pack heat exchanger made with copper pipes and aluminium fins adequately spaced to ensure better heat exchange performance.

CYCLE REVERSING VALVE

4-way cycle reversing valve. Inverts the flow of refrigerant gas.

LIQUID STORAGE TANK

(always passed through) It compensates the difference in volume between finned coil and plate exchanger, retaining excess liquid.

DEHYDRATOR FILTER

Hermetic-mechanical with ceramic and hygroscopic material cartridges, able to withhold impurities and any traces of humidity present in the cooling circuit.

NON-RETURN VALVES

Allow one-way flow of the refrigerant.

THERMOSTATIC VALVE

Mechanical valves with external equaliser, positioned: at evaporator outlet, they modulate the flow of gas to the evaporator, depending on the heat load, in order to ensure a correct heating level of the intake gas.

SOLENOID VALVES

The valve closes when the compressor switches off, blocking the flow of refrigerant gas to the evaporator, recovery device and the coil.

LIQUID SEPARATOR

Positioned at compressor intake to protect from any liquid refrigerant return, flooded start-up and operation with the presence of liquid.

LIQUID PASSAGE INDICATOR WITH HUMIDITY PRESENCE SIGNAL

Used to check presence of humidity in cooling circuit.

5.2. STRUCTURE AND FANS

SUPPORT STRUCTURE

Structure made of hot-dipped galvanised steel sheets, painted with polyester powders, built to guarantee easy accessibility for service and maintenance.

STANDARD FANS

Axial fans with IP 54 degree of protection, external rotor, helical blades, housed in nozzles, complete with accident-prevention protective screen. 6-pole electric motor with built-in magnet circuit breaker.

INVERTER ENHANCED CAPACITY FANS

	System 2 pipe		System 4 pipe				
	System	DHW	Cooling side	Heating side			
STANDARD HYDRAULIC CIRCUIT ON ALL VERSIONS	STANDARD HYDRAULIC CIRCUIT ON ALL VERSIONS						
Filter	Supplied	No	Supplied	No			
Flow switch	As per standard	No	As per standard	No			
VERSIONS WITH PUMPS ONLY (the more complete versions are described)							
Filter	As per standard	As per standard	As per standard	As per standard			

As per standard Pump/s As per standard As per standard As per standard Drain valve As per standard As per standard As per standard As per standard Air vent valve As per standard As per standard As per standard As per standard Expansion vessels (2x25 I) As per standard As per standard As per standard As per standard

STANDARD HYDRAULIC CIRCUIT 5.3.

WATER FILTER (SUPPLIED)

(mounted in the version with pump; it is supplied for the other versions).

Equipped with steel filtering mesh, prevents the heat exchangers both of the system side and the DHW/heating system side from clogging.

FLOW SWITCH

They have the task of controlling that there is water circulation inside the heat exchangers; if this is not the case, they block the unit.

5.3.1. Components of hydraulic circuit in configurable versions

PUMPS

High or low head pressure

VENT VALVES

Mounted on the upper part of the hydraulic system; they discharge any air pockets present in the same.

EXPANSION VESSELS (2X25 I)

With nitrogen pre-load membrane.

5.4. **CONTROL AND SAFETY COMPONENTS**

MANUALLY RESET HIGH PRESSURE SWITCH

With fixed calibration, placed on high pressure side of cooling circuit, inhibits compressor operation if abnormal work pressure occurs.

LOW PRESSURE TRANSDUCER

Positioned on the low pressure side of the cooling circuit, it informs the control board of the work pressure, generating a pre-alarm in the event of anomalous pressure.

HIGH PRESSURE TRANSDUCER

Positioned on the high pressures side of the cooling circuit, it informs the control board of the work pressure, generating a pre-alarm in the event of anomalous pressure.

COOLING CIRCUIT SAFETY VALVES

They intervene by discharging the overpressure in the event of anomalous pressures. - Calibrated at 45 bar on HP branch.

- Calibrated at 30 bar on LP branch.

DCPX CONDENSATION PRESSURE CONTROLLER

This accessory allows correct operation with external temperatures lower than 10°C and as low as – 10°C. It is made up from a regulation circuit board that changes the number of fan revs. on the basis of the condensation pressure read by the high pressure transducer in order to keep it sufficiently high for correct unit operation.

It also allows correct operation in heating mode with external temperatures exceeding 30°C and up to 42°C.

ELECTRIC CONTROL BOARD 5.5.

Electric control board incompliance with EN 60204-1/ IEC 204-1 Standards, complete with:

- transformer for the control circuit,
- door lock main isolating switch,
- fuses and contactors for compressors and fans,
- Aermec code 5806765 00 12.02

- clamps for REMOTE PANEL,
- spring type control circuit terminal board, outdoor electric board with double door and
- gaskets,
- electronic controller,
- evaporator pump and recovery pump control consent relay (for versions without pump units only).
- all numbered cables.

DOOR-LOCK ISOLATING SWITCH

The electric control board can be accessed by removing the voltage using the opening lever on the board itself. This lever can be locked using one or more padlocks during maintenance interventions in order to prevent the machine being made live accidentally.

CONTROL KEYBOARD

Allows complete control of the appliance. For a more detailed description refer to the user manual.

POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS

NRP

0800-

NRP

1250-

recovery	hydronic	unit
----------	----------	------

1000						
c		SDgr	R1	R2	R3	R4
system hydronic unit	SDgr	ok	ok	na	ok	na
it d	P1	ok	ok	na	ok	na
E B	P2	ok	ok	na	ok	na
/ste	P3	ok	ok	na	ok	na
S	P4	ok	ok	na	ok	na

POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS

recovery hydronic unit

1800		recovery nyaronic unit												
.c		SDgr	R1	R2	R3	R4								
system hydronic unit	SDgr	ok	ok	ok	ok	ok								
it di	P1	ok	ok	ok	ok	ok								
E B	P2	ok	ok	ok	ok	ok								
/ste	P3	ok	ok	ok	ok	ok								
S	P4	ok	ok	ok	ok	ok								

6. ACCESSORIES

6.1. MECHANICAL ACCESSORIES

AVX ANTI-VIBRATION MOUNTS

Group of anti-vibration mounts.

GP PROTECTION GRIDS

Protect the external coil from blows and prevent access to the underlying area where the compressors and the cooling circuit are housed. Every kit includes two grids.

6.2. ELECTRIC ACCESSORIES

AER485P1

RS-485 interface for supervising systems with MODBUS protocol.

PGD1

Graphical display, which allows complete management of the unit, like the one on board the machine. Can be controlled up to 50 m away with a telephone cable, 200 m with a shielded AWG 24 cable.

AERWEB300

Accessory AERWEB allows remote control of a chiller through a common PC and an ethernet connection over a common browser; 4 versions available: AERWEB300-6: Web server to monitor and remote control max. 6 units in RS485 network;

AERWEB300-18: Web server to monitor and remote control max. 18 units in RS485 network;

NRP 0800-1800

AERWEB300-6G: Web server to monitor and remote control max. 6 units in RS485 network with integrated GPRS modem;

AERWEB300-18G: Web server to monitor and remote control max. 18 units in RS485 network with integrated GPRS modem;

DRE

Initial starting current reduction electronic device (approximately 26% in dual circuit,). Available only with 400 V power supply. Can only be applied in the factory.

RIF

Current rephaser. Connected in parallel to the motor, it allows a reduction of the input current (approx. 10%). It can only be installed in the factory and so must be requested on ordering.

NRP		0800	0900	1000	1250	1400	1500	1650	1800
AVX	00	704	710	716	719	725	730	734	737
	P1-P2-P3-P4	706	712	712	721	727	732	736	736
	P1 R1P4 R4	706	712	712	721	727	732	736	736
GP	ALL	GP260	GP260	GP260	GP350	GP350	GP350	GP500	GP500

ELECTRIC ACCESS	ORIES								
DRE	ALL	801	901	1001	1251	1401	1501	1651	1801
REF	ALL	88	90	92	92	93	94	94	94
AER485P1	ALL	•	•	•	•	•	•	•	•
PGD1	ALL	•	•	•	•	•	•	•	•
AERWEB300-6	ALL	•	•	•	•	•	•	•	•
AERWEB300-18	ALL	•	•	•	•	•	•	•	•
AERWEB300-6G	ALL	•	•	•	•	•	•	•	•
AERWEB300-18G	ALL	•	•	•	•	•	•	•	•

7. **TECHNICAL DATA**

Model			800	900	1000	1250	1400	1500	1650	1800
Co	HA	kW	218	243	260	323	365	402	441	477
Cooling capacity	HE	kW	200	217	230	291	332	368	402	430
	HA	kW	72.4	82.2	88.2	107.7	121.0	135.0	145.3	155.9
Input power	HE	kW	80.3	94.3	100.4	120.5	134.4	149.2	161.6	175.1
Markey flag and a	HA	l/h	37498	41841	44753	55506	62852	69171	75888	81966
Water flow rate	HE	l/h	34477	37289	39609	50044	57122	63288	69115	73977
Total pressure drops	HA	kPa	59	58	54	64	52	53	55	55
SYSTEM SIDE	HE	kPa	50	47	43	54	43	44	46	45
Useful head pressure	HA	kPa	123	114	111	128	128	125	106	95
Low head pressure	HE	kPa	135	132	131	150	149	141	126	119
Useful head pressure	HA	kPa	240	230	225	269	266	246	241	232
High head pressure	HE	kPa	252	249	247	293	289	272	261	255
Heating capacity	HA HE	kW	241	258	290	384	400	459	503	544
Input power	HA HE	kW	73,2	79,7	87,8	114,5	119,5	137,6	153,0	164,6
Water flow rate	HA HE	l/h	41498	44312	49946	66115	68833	78870	86579	93555
Pressure drops			70		<u> </u>	00		60	70	72
SYSTEM SIDE VERS. 2 PIPES	HA HE	kPa	73	66	68	93	63	68	72	72
Pressure drops SYSTEM SIDE	HE	kPa	50	44	49	49	44	51	51	53
ENERGY INDEX										
	HA		3,01	2,96	2,95	3,00	3,02	2,98	3,04	3,06
EER	HE		2,50	2,30	2,29	2,41	2,47	2,47	2,49	2,46
COP	HA HE		3,29	3,23	3,31	3,36	3,35	3,33	3,29	3,30
TOTAL RECOVERY										
Cooling capacity	HA HE	kW	223	251	278	334	379	422	463	496
Recovered power	HA HE	kW	289	328	364	432	491	550	598	642
Total input power	HA HE	kW	66,0	77,0	86,0	98,0	112,0	128,0	135,0	146,0
TER - Total Rfficiency Ratio		W/W	7,76	7,52	7,47	7,82	7,77	7,59	7,86	7,79
Evaporator water flow rate	HA HE	/ I/h	38356	43172	47817	57449	65189	72585	79637	85313
Evaporator pressure drops	HA HE	kPa	62	62	62	71	56	58	61	60
SYSTEM SIDE		1/1-	40700	56447	62600	74205	04452	04601	102057	110425
Recovery water flow rate	HA HE	l/h	49709	56417	62609	74305	84453	94601	102857	110425
Recovery pressure drops DHW SIDE/SYSTEM SIDE ¹	HA HE	kPa	72	72	77	63	66	73	72	74
Useful head pressure		kPa	91	73	98	102	106	87	75	49
Low headpressure pump		кга	51	73	50	102	100	07	75	45
Useful head pressure		kPa	204	182	158	212	197	180	213	187
High head pressure										
UNIT PROTECTION RATING				1			1		1	
IP			24	24	24	24	24	24	24	24
ELECTRICAL DATA										
Power supply	V/ph	/Hz				400V/	3/50Hz			
Tatal in autournant	HA	А	136	158	180	196	235	273	289	304
Total input current	HE	А	145	169	192	211	251	292	306	324
Maximum current (FLA)	HA HE	А	173	195	217	267	296	325	365	398
Initial starting current (LRA)	HA HE	А	348	404	426	535	505	534	633	666

1	COOLING	

Evaporator inlet water temperature	12°C
Evaporator outlet water temperature	7°C
External air temperature	35 °C

(2) HEATING Condenser inlet water temperature

Condenser outlet water temperature External air temperature

40°C 45°C 7°C d.b. 6°C w.b.

(3) COOLING with recovery (DHW/system side) Recovery outlet water temperature 45°C Evaporator outlet water temperature 7 °C

∆t water

1 DHW SIDE/SYSTEM SIDE

> DHW side, production of domestic hot water, in 2-pipe systems. System side, production of hot water, in 4-pipe systems.

5°C

EN

Model			800	900	1000	1250	1400	1500	1650	1800
SCROLL COMPRESSORS						·				
Quantity/circuit	n	°/n°	4/2	4/2	4/2	4/2	5/2	6/2	6/2	6/2
· · · · · · · · · · · · · · · · · · ·		7.11	7/2	7/2	7/2	172	5/2	0/2	0/2	0/2
SYSTEM SIDE HEAT EXCHANGER					1	1				
Water content		dm ³	10.5	12.3	14.8	16.7	26.6	30.2	32.9	37.4
Hydraulic connections (Victaulic)		Ø	3"	3"	3"	4"	4"	4"	4"	4"
		S١	STEM SIDE H	IYDRONIC KI	t (2 AND 4 PI	PES)				
EXPANSION VESSEL										
Expansion vessel		n°/l	1/24	1/24	1/24	1/24	1/24	1/24	1/24	1/24
Expansion vessel calibration		bar	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LOW HEAD PRESSURE PUMP										
Input power		kW	3	3	3	4	4	5.5	5.5	5.5
Input current		A	6.2	6.2	6.2	8.1	8.1	11	11	11
HIGH HEAD PRESSURE				•			·			
Input power		kW	5.5	5.5	5.5	7.5	7.5	7.5	11	11
Input current		A	11	11	11	14.6	14.6	14.6	21.2	21.2
		A				1 1.0	11.0	11.0		21.2
DHW/SYSTEM SIDE HEAT EXCHANGER							a c -			
Water content		dm ³	12.3	14.8	16.7	26.6	30.2	32.9	37.4	41.0
Hydraulic connections (Victaulic)		Ø	3"	3"	3"	4"	4"	4"	4"	4"
	DHW	SIDE HY	DRONIC KIT (2 PIPES) - SY	STEM HEATIN	IG SIDE (4 PIF	PES)			
EXPANSION VESSEL										
Expansion vessel		n°/l	1/24	1/24	1/24	1/24	1/24	1/24	1/24	1/24
Expansion vessel calibration		bar	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
LOWHEAD PRESSURE PUMP										
Input power		kW	3	3	4	4	5.5	5.5	5.5	5.5
Input current		A	6.2	6.2	8.1	8.1	11	11	11	11
•				-	-					
HIGH HEAD PRESSURE PUMP		1.3.47				7.5	7 5	7.5	11	11
Input power		kW	5.5	5.5	5.5	7.5	7.5	7.5	21.2	11 21.2
Input current		A	11	11	11	14.6	14.6	14.6	21.2	21.2
STANDARD AXIAL FANS				1	1		1			
Quantity	HA	n°	4	4	4	6	6	6	8	8
Q	HE	n°	4	4	4	6	6	6	8	8
Air flow rate when cold	HA	m³/h	85600	84600	83600	126000	124200	122400	168000	165600
	HE	m³/h	59920	59220	60610	88200	90000	91800	117600	115920
Air flow rate when hot	HA	m³/h	85600	84600	83600	126000	124200	122400	168000	165600
-	HE	m³/h	85600	84600	83600	126000	124200	122400	168000	165600
Input current when cold	HA	A	14.4	14.4	14.4	21.6	21.6	21.6	28.8	28.8
	HE	A	9.3	9.3	9.3	14.0	14.0	14.0	18.6	18.6
Input current when hot	HA	A	14.4	14.4	14.4	21.6	21.6	21.6	28.8	28.8
	HE	A	14.4	14.4	14.4	21.6	21.6	21.6	28.8	28.8
Input power when cold	HA	kW	6.8	6.8	6.8	10.2	10.2	10.2	13.6	13.6
	HE	kW	4.4	4.4	4.4	6.6	6.6	6.6	8.8	8.8
Input power when hot	HA	kW	6.8	6.8	6.8	10.2	10.2	10.2	13.6	13.6
	HE	kW	6.8	6.8	6.8	10.2	10.2	10.2	13.6	13.6
INVERTER AXIAL FANS -J-										
Static pressure		Ра	80	80	80	80	80	80	80	80

Model			800	900	1000	1250	1400	1500	1650	1800
SOUND DATA ¹	,									
			COOLI	ING MODE OPI	ERATION					
Courd processo	HA	dB(A)	56.5	56.5	56.5	59.5	59	58.5	60	62
Sound pressure	HE	dB(A)	51	51	51	54	53.5	53	54.5	56.5
C	HA	dB(A)	88.5	88.5	88.5	91.5	91	91.5	92	94
Sound power	HE	dB(A)	83	83	83.5	86	85.5	85	86.5	88.5
			HEATI	ING MODE OPE	ERATION					
Sound pressure		dB(A)	56.5	56.5	56.5	59.5	59	58.5	60	62
Sound power		dB(A)	88.5	88.5	88.5	91.5	91	91.5	92	94
LOADS										
D410frigarant	C1	1	38	38	42	47	47	60	70	80
R410 refrigerant	C2	- kg	38	42	42	47	60	60	80	80
01	C1	dm ³	6.7+6.7	6.7+6.7	6.7+6.7	7.2+7.2	7.2+7.2	6.7+6.7+6.7	6.7+6.7+6.7	7.2+7.2+7.2
Oil	C2	am	6.7+6.7	6.7+6.7	6.7+6.7	7.2+7.2	6.7+6.7+6.7	6.7+6.7+6.7	7.2+7.2+7.2	7.2+7.2+7.2
DIMENSIONS - WEIGHTS empty	y unit									
Height			2450	2450	2450	2450	2450	2450	2450	2450
Width			2200	2200	2200	2200	2200	2200	2200	2200
Depth			3400	3400	3400	4250	4250	4250	5750	5750
Empty weight			2270	2460	2640	2970	3220	3430	3950	4090

Sound power

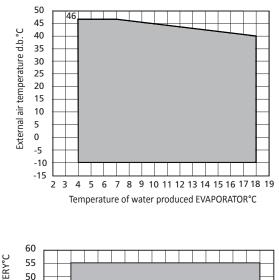
Aermec determines sound power values on the basis of measurements made in compliance with the 9614-2 Standard, in agreement with that requested by Eurovent certification.

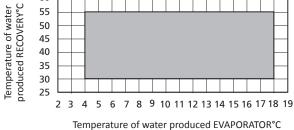
Sound pressure

Sound pressure in free field conditions on reflective surface (directivity factor Q=2) at 10 mt from the external surface of unit, in compliance with ISO 3744 regulations.

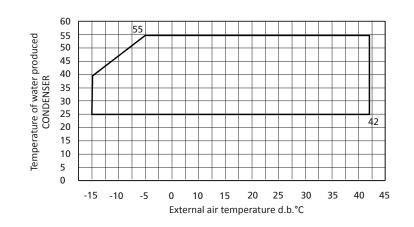
Cooling mode - The 'HE' version is low noise with 1. temperature 12/7°C -35°C Heating mode - The 'HE' version is low noise witth temperature > 25°

8. OPERATIONAL LIMITS


8.1. COOLING MODE¹

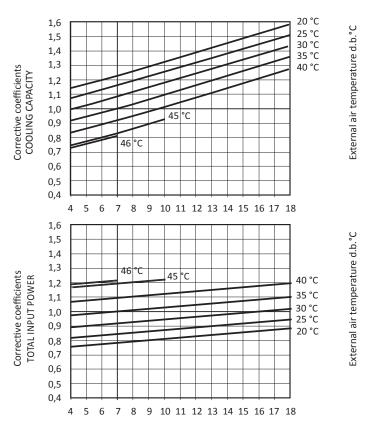

In standard configuration, the appliances are not suitable for installation in salty environments. For operating limits, please refer to the diagrams, valid for Δt = 5°C.

ATTENTION


A

The installation of windbreaks is recommended in windy areas, for correct operation of the DCPX. Installation is recommended if wind speed exceeds 2.5 m/s.

8.2. HEATING MODE¹

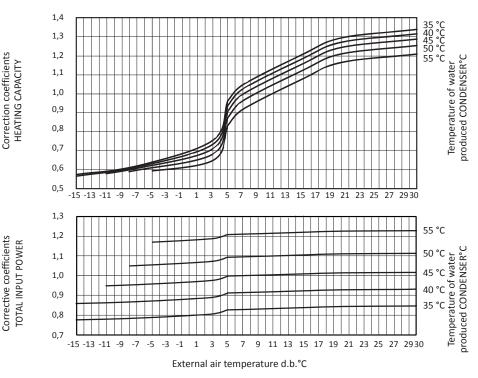


Note:

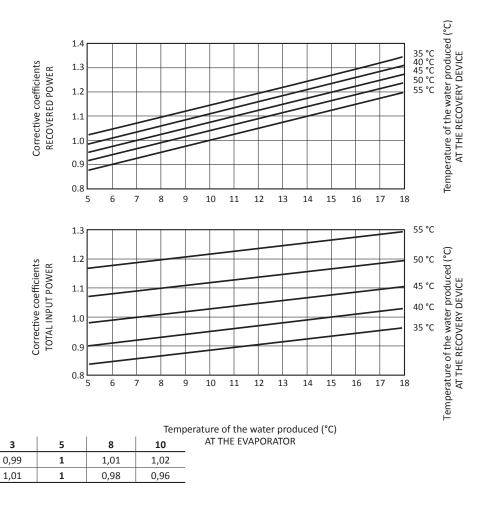
 In SUMMER mode, the unit can be started with external air 46°C and inlet water 35°C.
 IN WINTER AND RECOVERY MODE, the unit can be started with external air -15°C and inlet water 20°C. In these conditions, operation is only allowed for a brief period of time and in order to take the system to the correct temperature. To shorten this operation, it is recommended to install a three-way valve, which makes it possible to by-pass the water from the utilities to the system, until achieving conditions that allow the unit to work within the allowed operating limits.

9. CORRECTION FACTORS FOR DATA DIFFERENT TO NOMINAL IN COOLING MODE

9.1. YIELDS AND ABSORPTION DIFFERENT TO NOMINAL


Temperature of water produced EVAPORATOR°C

ΔT WATER DIFFERENT TO NOMINAL (ΔT 5°C)	3	5	8	10
Cooling capacity correction factors	0,99	1	1,02	1,03
Input power correction factors	0,99	1	1,01	1,02


DEPOSIT FACTORS [K*m2]/[W]	0,00005	0,0001	0,0002
Cooling capacity correction factors	1	0,98	0,94
Input power correction factors	1	0,98	0,95

10. CORRECTION FACTORS FOR DATA DIFFERENT TO NOMINAL IN HEATING MODE

10.1. YIELDS AND ABSORPTION DIFFERENT TO NOMINAL

11. RECOVERED HEATING CAPACITY CORRECTION COEFFICIENTS

ΔT WATER DIFFERENT TO NOMINAL (ΔT 5°C)

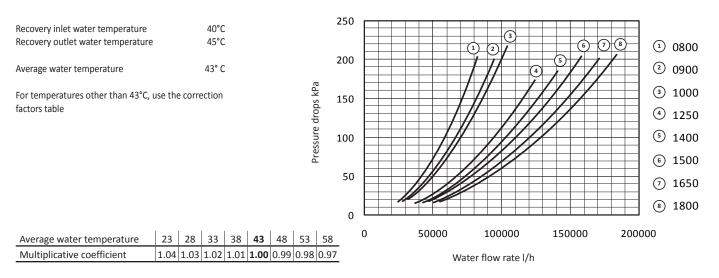
Heating capacity correction factors

Input power correction factors

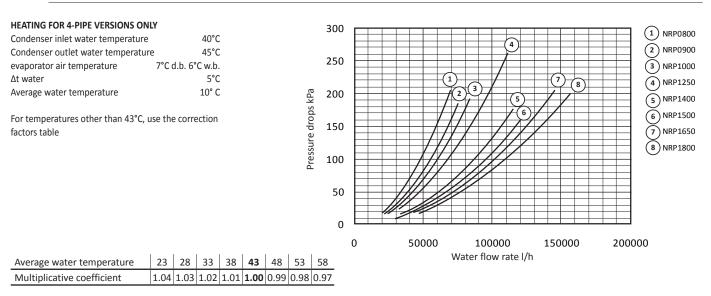
12.1. SYSTEM SIDE COLD WATER PRODUCTION (2 PIPES)

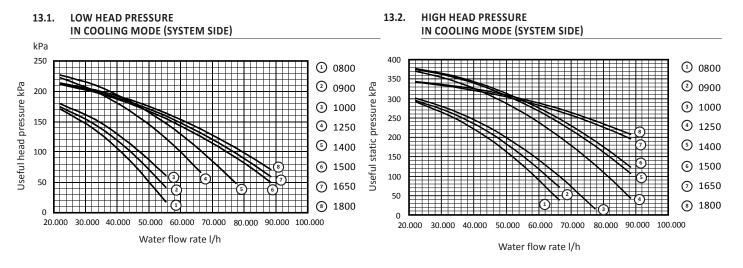
7°C	
12°C	
35 °C	
10° C	
	12°C 35 °C

For temperatures other than 10°C, use the correction factors table.

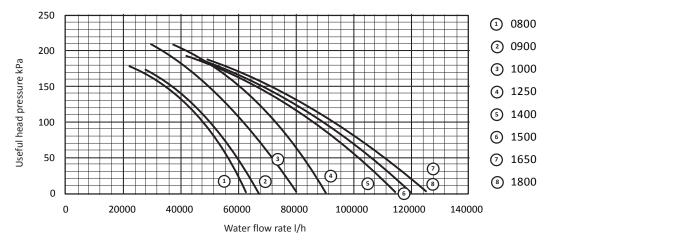

Average water temperature

Multiplicative coefficient

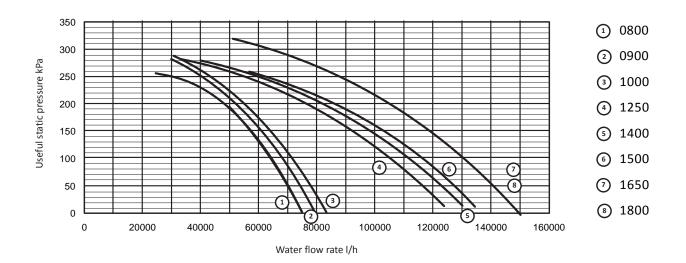

re		12°C					200				(4)				
re		35 °C					180			1_2_				(1)	800
							160			<u> </u>		56	$\overline{\mathcal{O}}$	2	
		10° C				kPa	140			77		11			900
uco th	e corre	ction				sdo	120			\square		\square		3	1000
use th	econe	CLIOII				Pressure drops	100			\blacksquare				4	1250
						sure			$ \rightarrow A $	-		A		5	1400
						res	80			\square				6	1500
						_	60			TZ,					
							40			X				7	1650
							20							8	1800
							0								
1	1		I			I	(0	50000		100	000	150	000	
5	10	<u> </u>	20	30	40	50			١	Vater fl	ow rate	l/h			
1.02	2 1	0.98	0.97	0.95	0.93	0.91						,			


12.3. WHEN OPERATING WITH DHW SIDE RECOVERY (2 PIPES) | SYSTEM SIDE HOT WATER PRODUCTION (4 PIPES)

200



12.2. SYSTEM SIDE HOT WATER PRODUCTION (2 PIPES)



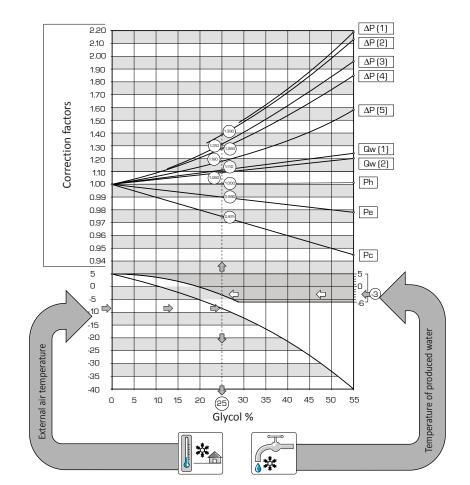
13.3. DHW SIDE LOW HEAD PRESSURE PUMPS (2 PIPES) | HEATING SIDE (4 PIPES)

14. ETHYLENE GLYCOL SOLUTION

- The cooling capacity and input power correction factors take the presence of glycol and the different evaporation temperature into account.
- The pressure drop correction factor considers the different flow rate resulting from the application of the water flow rate correction factor.
- The water flow rate correction factor is calculated in a way to keep the same Δt that would be present with the absence of glycol.

NOTE

An example is given on the next page to help graph reading.


The diagram below can be used to establish the percentage of glycol necessary; this percentage can be calculated by taking one of the following factors into consideration:

Depending on which fluid is considered (water or air), the graph is interpreted from the right or left side. A point is obtained from the intersection point of the external temperature line or the water produced line and the relative curves, through which the vertical line must pass that will identify both the glycol percentage and the relative correction coefficients.

14.1. HOW TO INTERPRET GLYCOL CURVES

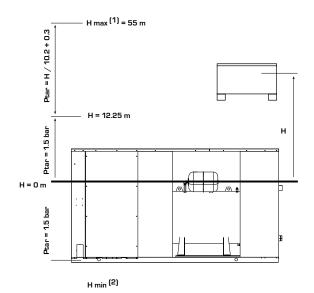
The curves shown in the diagram summarise a significant number of data, each of which is represented by a specific curve. In order to use these curves correctly it is first necessary to make some initial reflections:

- If you wish to calculate the percentage of glycol on the basis of the external air temperature, enter from the left axis and on reaching the curve draw a vertical line, which in turn will intercept all the other curves; the points obtained from the upper curves represent the coefficients for the correction of the cooling capacity and input power, the flow rates and the pressure drops (remember that these coefficients must be multiplied by the nominal value of the size in question); while the glycol percentage value recommended to produce desired water temperature is on the lower axis.
- If you wish to calculate the percentage of glycol on the basis of the temperature of the water produced, enter from the right axis and on reaching the curve draw a vertical line, which in turn will intercept all the other curves; the points obtained from the upper curves represent the coefficients for the correction of the cooling capacity and input power, the flow rates and the pressure drops (remember that these coefficients must be multiplied by the nominal value of the size in question); while the lower axis recommends the glycol percentage value necessary to produce water at the desired temperature.
- Remember that the initial "EXTERNAL AIR TEM-PERATURE" and "TEMPERATURE OF PRODUCED WATER" values are not directly related, therefore it is not possible to refer to the curve of one of these values and obtain corresponding point on the other curve.

KEY:

- Pc Cooling capacity correction factor
- Pe Input power correction factor
- Ph Heating capacity correction factor
- ΔP (1) Correction factor for pressure drops with an average fluid temp. = 3.5 °C
- ΔP (2) Correction factor for pressure drops with an average fluid temp. = 0.5 °C
- ΔP (3) Correction factor for pressure drops with an average fluid temp. = 5.5 °C
- ΔP (4) Correction factor for pressure drops with an average fluid temp. = 9.5 °C
- ΔP (5) Correction factor for pressure drops with an average fluid temp. = 47.5 °C
- Qw (1) Correction factor for flow rates (evap) with an average fluid temp= 9.5 °C
- Qw (2) Correction factor of flow rates (condenser) with an average fluid temp. = 47.5°C

NOTE


Although the graph shows an external air temperature of -40°C, the unit operational limits must be complied with.

EXPANSION VESSEL CALIBRATION 15.

14.1.1. Expansion vessel calibration

Standard factory-set pressure value of the expansion vessel is 1.5 bar, whereas volume is 24 litres. Maximum value 6 bar.

Vessel calibration must be regulated depending on the maximum level difference (H) of the user (see diagram) in agreement with the following formula: p (calibration) [bar] = H [m] / 10.2 + 0.3. For example: if level difference (H) is equal to 20 m, the calibration value of the vessel will be 2.3 bar. If the calibration value obtained from formula is less than 1.5 bar (i.e. for H < 12.25), keep standard calibration.

KEY

- (1) Check that highest installation is not higher than 55 metres.
- (2) Ensure that lowest installation can withstand global pressure in that position.

MINIMUM WATER CONTENT 16.

NRP		0800	1000	1250	1400	1500	1650	1800
Number of compressors	n°	4	4	4	4	4	4	4
Minimum water content admitted COLD SIDE		7	7	7	7	7	7	7
Minimum water content admitted the HOT SIDE		7	7	7	7	7	7	7
Recommended water content COOLING SIDE HEATING SIDE	l/kW	14	14	14	14	14	14	14

It is recommended to design systems with high water content (minimum recommended values shown in table), in order to limit:

- 1. The hourly number of inversions between operating modes.
- 2. Drop in water temperature during winter defrost cycles.

17. PARTIALISATIONS

COOLING

Evaporator inlet water temperature	7°C
Evaporator outlet water temperature	12°C
Condenser air temperature	35 °C
Δt water	5°C

HEATING FOR 4-PIPE VERSIONS ONLY

Condenser inlet water temperature	40°C
Condenser outlet water temperature	45°C
evaporator air temperature	7°C d.b. 6°C w.b.
Δt water	5°C

			Capaci	ty steps		
COOLING CAPACITY %	1°	2°	3°	4°	5°	6°
0800	27	53	77	100	-	-
0900	27	53	77	100	-	-
1000	27	53	77	100	-	-
1250	27	53	77	100	-	-
1400	23	44	63	82	100	-
1500	19	37	55	71	86	100
1650	19	37	55	71	86	100
1800	19	37	55	71	86	100
INPUT POWER %	1°	2°	3°	4°	5°	6°
0800	23	47	73	100	-	-
0900	23	47	73	100	-	-
1000	23	47	73	100	-	-
1250	23	47	73	100	-	-
1400	18	37	56	77	100	-
1500	14	29	46	63	81	100
1650	14	29	46	63	81	100
1800	14	29	46	63	81	100
HEATING CAPACITY %	1°	2°	3°	4°	5°	6°
0800	27	52	77	100	-	-
0900	27	52	77	100	-	-
1000	27	52	77	100	-	-
1250	27	52	77	100	-	-
1400	24	43	62	83	100	-
1500	18	36	53	69	85	100
1650	18	36	53	69	85	100
1800	18	36	53	69	85	100
INPUT POWER %	1°	2°	3°	4°	5°	6°
0800	23	47	73	100	-	-
0900	23	47	73	100	-	-
1000	23	47	73	100	-	-
1250	23	47	73	100	-	-
1400	20	37	56	79	100	-
1500	14	29	46	63	81	100
1650	14	29	46	63	81	100
1800	14	29	46	63	81	100

18. SOUND DATA

ATTENTION The sound data is calculated with STANDARD fans!

Sound power

Aermec determines sound power values on the basis of measurements made in compliance with the 9614-2 Standard, in agreement with that requested by Eurovent certification.

Sound pressure

Sound pressure in free field conditions with reflective surface (directivity factor Q=2), in compliance with ISO 3744 Standard.

Cooling mode – The 'HE' version is low noise with temperature $12/7^{\circ}$ C - 35° C Heating mode – The 'HE' version is low noise witth temperature > 25°

		Tota	l sound le	evels			Octa	ave band	[Hz]			
NRP	VERS.	Pow.	Pres	sure.	125	250	500	1000	2000	4000	8000	
	VE	dB(A)	dB(A) 10 m	dB(A) 1 m	Sound power for central band frequency [dB] (A)							
				CO		ODE OPE	RATION					
0800	HE	83	51	64.5	96.5	80	77	75.5	69	65	59	
0900	HE	83	51	64.5	96.5	80	77	75.5	69	65	59	
1000	HE	83,5	51.5	65	96	82.7	78.6	74.2	73.3	69.3	65.4	
1250	HE	86	54	67.5	95.5	88	80.5	79.5	77	70	62	
1400	HE	85,5	53.5	67	98	83	80.5	79.5	73	64	58	
1500	HE	85	53	66.5	99	82	79	76	72	63	57	
1650	HE	86,5	54.5	68	99	84	79.5	80	77	67	62	
1800	HE	88,5	56.5	70	100	87.5	81.8	83	78.5	69	63.4	
	1	1			1	1	1	1	1	1		
0800	HA	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64	
0900	HA	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64	
1000	HA	88,5	56.5	70	98	87	84.8	82.9	79.1	75.1	67	
1250	HA	91,5	59.5	73	99.2	93.5	87.5	85.5	82.2	76	65.2	
1400	HA	91	59	72.5	101	90	86	87	79	71	64	
1500	HA	90,5	58.5	72	102	89	86	85	79	71.5	65	
1650	HA	92	60	73.5	101	92.5	88.5	87	81	73	66	
1800	HA	94	62	75.5	102	95	90.5	89.5	82	73	67	

	HEATING MODE OPERATION													
0800	HE	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64			
0900	HE	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64			
1000	HE	88,5	56.5	70	98	87	84.8	82.9	79.1	75.1	67			
1250	HE	91,5	59.5	73	99.2	93.5	87.5	85.5	82.2	76	65.2			
1400	HE	91	59	72.5	101	90	86	87	79	71	64			
1500	HE	90,5	58.5	72	102	89	86	85	79	71.5	65			
1650	HE	92	60	73.5	101	92.5	88.5	87	81	73	66			
1800	HE	94	62	75.5	102	95	90.5	89.5	82	73	67			
	1				1	1	1							
0800	HA	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64			
0900	HA	88,5	56.5	70	99.5	87.5	84.5	83	76.5	72	64			
1000	HA	88,5	56.5	70	98	87	84.8	82.9	79.1	75.1	67			
1250	HA	91,5	59.5	73	99.2	93.5	87.5	85.5	82.2	76	65.2			
1400	HA	91	59	72.5	101	90	86	87	79	71	64			
1500	HA	90,5	58.5	72	102	89	86	85	79	71.5	65			
1650	HA	92	60	73.5	101	92.5	88.5	87	81	73	66			
1800	HA	94	62	75.5	102	95	90.5	89.5	82	73	67			

19. CALIBRATIONS OF SAFETY AND CONTROL PARAMETERS

COOLING SET	min	Max.	default
Water inlet temperature (cooling mode)	-10 °C	20 °C	7° C
HEATING SET			
Water inlet temperature (heating mode)	45°C	55 °C	50 °C
ANTI-FREEZE ALARM INTERVENTION			
Intervention temperature on EVAPORATOR side	-15 °C	4 °C	3 °C
TOTAL DIFFERENTIAL			
Proportional temperature band within which the com-	3 °C	10 °C	5 °C
pressors are activated and deactivated	5 C	10 C	50

COMPRESSORS MAGNET C	IRCUIT	0800	0900	1000	1250	1400	1500	1650	1800
MTC1	А	40	40	51	62	62	51	51	62
MTC1A	А	40	40	51	62	62	51	51	62
MTC1B	Α	-	-	-	-	-	51	51	62
MTC2	А	40	51	51	62	51	51	62	62
MTC2A	А	40	51	51	62	51	51	62	62
MTC2B	А	-	-	-	-	51	51	62	62
MANUAL RESET HIGH PRES	SURE SV	VITCH							
PA	bar	40	40	40	40	40	40	40	40
HIGH PRESSURE TRANSDUC	ER								
ТАР	bar	39	39	39	39	39	39	39	39
LOW PRESSURE TRANSDUC	ER								
ТВР	bar	2	2	2	2	2	2	2	2
COOLING CIRCUIT SAFETY V	ALVES								
HP	bar	45	45	45	45	45	45	45	45
LP	bar	30	30	30	30	30	30	30	30
FANS MAGNET-CIRCUIT BREAK	ERS - Cal	ibration i	s perform	ed on 2 r	nagnet-ci	rcuit brea	kers (2 ve	entilation	lines)
	А	9	9	9	14	14	14	18	18

CONSTRUCTING the unit: SAFETY

- 1. Machinery directive 2006/42/EC
- 2. Low voltage directive LVD 2006/95/EC
- Electromagnetic compatibility directive EMC 2004/108/EC
- 4. Directive regarding pressurised devices PED 97/23/EC, EN 378,
- 5. UNI12735, UNI14276

ELECTRIC PART

- 1. IEC EN 60335-2-40,
- 2. IEC EN 61000-6-1/2/3/4

ACOUSTIC PART

1.

ISO DIS 9614/2 (intensimetric method)

PROTECTION RATING

REFRIGERANT GAS

This unit contains fluoride gases with greenhouse effect covered by the Kyoto Protocol. Maintenance and disposal must only be performed by qualified staff, in compliance with standards in force.

ATTENTION

Tampering, removal, lack of the identification plate or other does not allow the safe identification of the product and will make any installation or maintenance operation to be performed difficult.

20. GENERAL WARNINGS

AERMEC NRP heat pumps are manufactured according to the acknowledged technical standards and safety regulations. They are designed for summer and winter conditioning and the production of domestic hot water. Any contractual or extracontractual liability of the Company is excluded for injury/damage to persons, animals or objects owing to installation, regulation and maintenance errors or improper use. All uses not expressly indicated in this manual are prohibited.

20.1. PRESERVATION OF THE DOCUMENTATION

The instructions and all related documentation must be given to the user of the system, who is responsible for preserving the same so that they are always on hand when required.

Read this file carefully; the execution of all jobs must be performed by qualified staff, according to the Standards in force on this subject in the different countries (Ministerial Decree 329/2004).

20.2. INSTALLATION

The unit must be installed in a way that maintenance and/or repairs can be carried out.

20.3. WARRANTY

The appliance warranty does not cover the costs for ladders, scaffolding or other elevation systems, which may become necessary for carrying out interventions under warranty.

Do not modify or tamper with the heat pump as dangerous situations can be created and the manufacturer will not be liable for any damage caused. The warranty shall be become null and void if the above-mentioned indications are not respected.

20.4. WARNINGS REGARDING SAFETY AND INSTALLATION STANDARDS

The heat pump must be installed by a qualified and suitably trained technician, in compliance with the national legislation in force in the country of destination (Ministerial Decree 329/2004).

AERMEC will not assume any liability for damage if these instructions are not respected.

Before beginning any operation, *READ THESE* INSTRUCTIONS CAREFULLY AND CARRY OUT THE SAFETY CHECKS TO AVOID ALL RISKS.

All the staff involved must have thorough knowledge of the operations and any dangers that may arise when the unit installation operations are carried out.

21. PRODUCT IDENTIFICATION

The NRP multipurpose appliances can be identified through: **PACKING LABEL** which shows the product identification data.

TECHNICAL PLATE

INSTALLATION SECTION

NRP 0800-1800

22. RECEIPT OF THE PRODUCT AND INSTALLATION

22.1. RECEIPT AND HANDLING

The machine is delivered from the factory wrapped in estincoil. Before handling the unit, verify the lifting capacity of the machines used. Handling must be performed by qualified, suitably equipped staff.

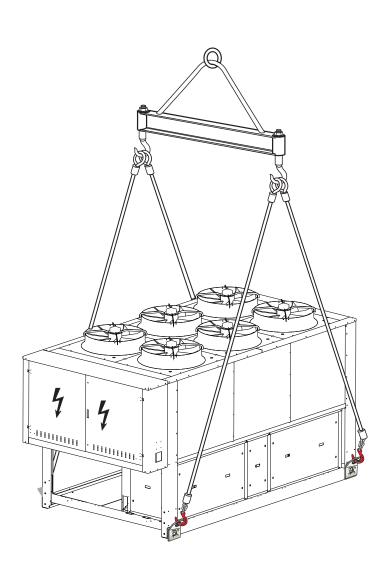
22.2. HANDLING THE MACHINE:

Whenever the machine must be lifted using belts, place protections between the belts and the framework to prevent damage to the structure. NRP 0800-1800 units are supplied with eyebolts; they must be lifted using suitable belts hooked to all the installed eyebolts.

22.2.1. Lifting regulations

- 1. All panels must be tightly fixed before handling the unit;
- 2. Before lifting, check the specific weight on the technical plate;
- 3. Use all, and only, the lifting points indicated;
- 4. Use ropes in compliance with Standards and of equal length;
- Use a spacer beam in compliance with Standards (not included);
- 6. Handle the unit with care and without sudden movements

It is prohibited to stop under the unit during lifting operations.

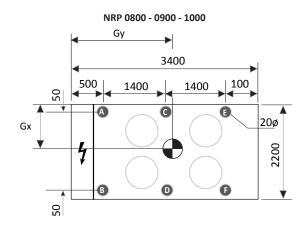

- The machine must always be kept in a vertical position;

- ATTENTION: The units CANNOT be stacked.

22.3. SELECTION AND PLACE OF INSTALLATION

The NRP air/water OUTDOOR heat pump with gas side inversion (R410A) is sent from the factory already inspected and only requires electric and hydraulic connections in the place of installation. Before beginning the installation process, decide with the customer where the unit is to be installed, whilst paying attention to the following:

- 1. The support surface must be capable of supporting the unit weight.
- The safety distances between the units and other appliances or structures must be scrupulously respected.
- The unit must be installed by a qualified technician in compliance with national laws in the country of destination.
- It is mandatory to envision the necessary technical spaces in order to allow ROUTINE AND EXTRAORDINARY MAINTENANCE interventions.
- Remember that during operation, the chiller can cause vibrations; therefore "AVX" anti-vibration mounts (ACCESSORIES) are recommended, which are fixed to the base according to the assembly layout.
- 6. Fix the unit checking that it is level.



TAB.2

	WEIGHT OF UNITS WHEN EMPTY														
NRP	u	GHT	BARYC	BARYCENTRE WEIGHT DISTRIBUTION ON											
	N.		(m	m)		S	UPPO	RTS (%)	i		i	Ŭ,		
	HYDRONIC KIT	UNIT WEI (KG)	Gx	Gy	Α	В	с	D	E	F	G	н	AVX KIT		
0800	00	2270	1331	821	11.2%	18.8%	19.5%	32.7%	6.7%	11.2%	-	-	704		
0900	00	2460	1374	794	10.1%	17.9%	19.1%	33.8%	6.9%	12.2%	-	-	710		
1000	00	2640	1354	793	10.2%	18.1%	19.4%	34.4%	6.5%	11.5%	-	-	716		
1250	00	2970	1748	796	10.5%	18.5%	18.7%	33.1%	7.0%	12.3%	-	-	719		
1400	00	3220	1789	907	10.9%	15.6%	22.4%	32.0%	7.8%	11.2%	-	-	725		
1500	00	3430	1772	771	8.9%	16.6%	20.1%	37.3%	6.0%	11.1%	-	-	730		
1650	00	3950	2504	792	8.4%	15.0%	11.7%	20.7%	9.8%	17.5%	6.1%	10.8%	734		
1800	00	4090	2502	807	8.5%	14.7%	12.1%	20.9%	9.9%	17.0%	6.2%	10.7%	737		

2

VIEWS FROM ABOVE

NRP 1250 - 1400 - 1500

→ 4250

C

D

1825

Gy

1825

500

4

A

50

Gx

.2 WEIGHTS of the individual HYDRONIC KITS ¹

HYDRONIC KIT	P1	P2	P3	P4	R1	R2	R3	R4	AVX
0800	221	271	251	291	221	271	251	291	706
0900	223	263	253	283	223	263	253	283	712
1000	221	261	251	281	221	261	251	281	712
1250	232	282	262	302	232	282	262	302	721
1400	223	263	253	283	223	263	253	283	727
1500	248	318	248	278	248	318	248	278	732
1650	253	323	283	343	253	323	283	343	736
1800	243	313	273	333	243	313	273	333	736

ATTENTION

1.

2.

The weight of the hydronic kits does not affect the barycentre and the distribution of the % weight on the supports refer to the "00" versions without hydronic kit, see TAB 1. The AVX listed by size in TAB.2 can also be coupled in all pos-

sible combinations between the: SYSTEM/DHW COOLING/HEATING side hydronic kits

			Ľ					
					NRP 1	650 - 1800		
			<	Gy				
			-		57	50		ļ
		50	80	0 1915	▶ 720	1915	400	
Gx		*			C	E		20ø
	V		4					2200
		•		B	D			•
		50						

NRP 0800- 1000	POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS recovery hydronic unit						
J		SDgr	R1	R2	R3	R4	
ju	SDgr	ok	ok	na	ok	na	
it di	P1	ok	ok	na	ok	na	
E B	P2	ok	ok	na	ok	na	
system hydronic unit	P3	ok	ok	na	ok	na	
S	P4	ok	ok	na	ok	na	

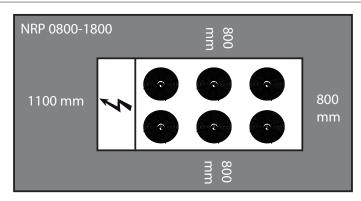
NRP POSSIBLE CONFIGURATIONS BETWEEN HYDRONIC KITS

1250- 1800	recovery hydronic unit						
ic		SDgr	R1	R2	R3	R4	
ron	SDgr	ok	ok	ok	ok	ok	
system hydronic unit	P1	ok	ok	ok	ok	ok	
u l	P2	ok	ok	ok	ok	ok	
/ste	P3	ok	ok	ok	ok	ok	
Ś	P4	ok	ok	ok	ok	ok	

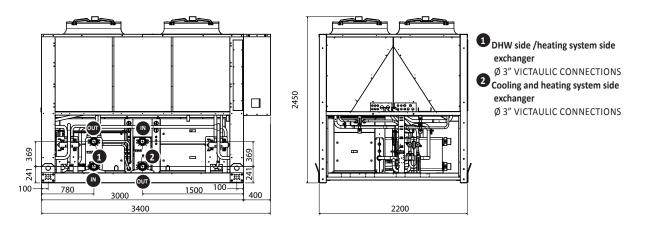
NRP 0800-1800

100

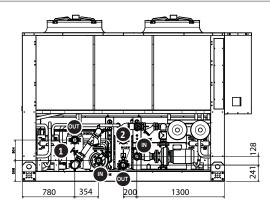
20ø

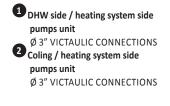

2200

Ø

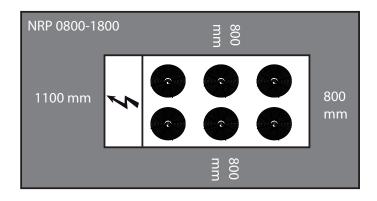

a

24. DIMENSIONS | HYDRAULIC CONNECTIONS

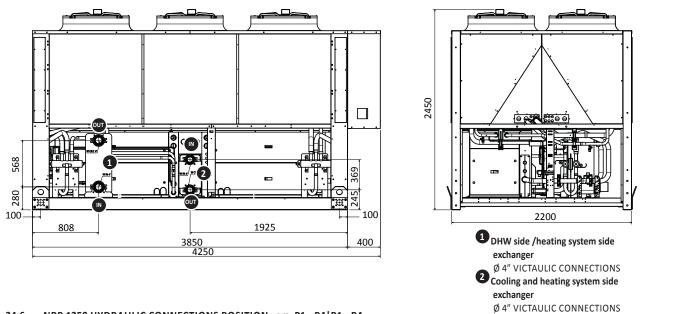

24.1. NRP0800 ÷ 1000 MINIMUM TECHNICAL SPACES

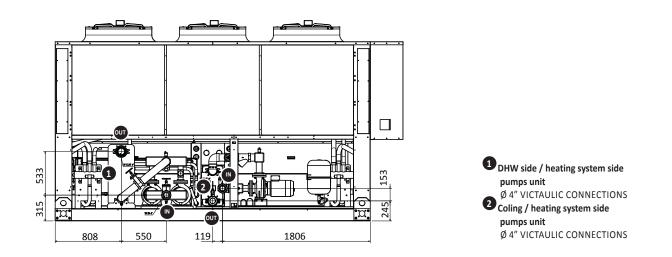


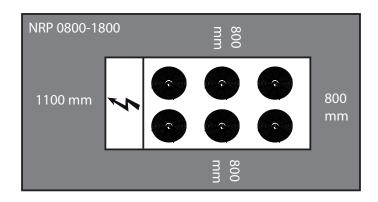
24.3. NRP0800 ÷ 1000 HYDRAULIC CONNECTIONS POSITION vers. 00

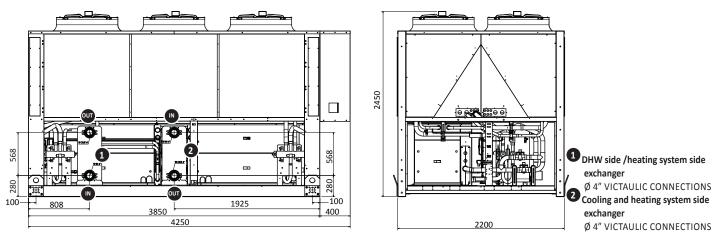


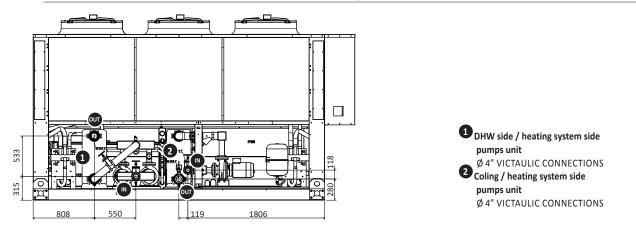
24.2. NRP0800 ÷ 1000 HYDRAULIC CONNECTIONS POSITION vers. P1...P4 | R1...R4

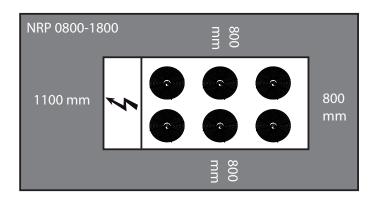


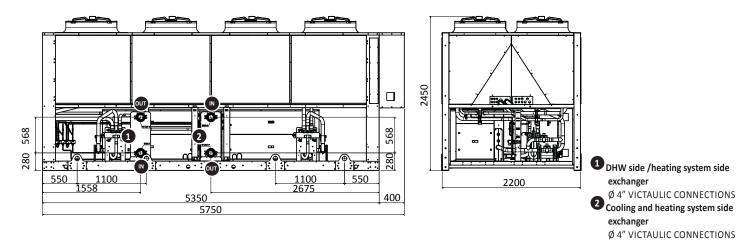

24.4. NRP 1250 MINIMUM TECHNICAL SPACES

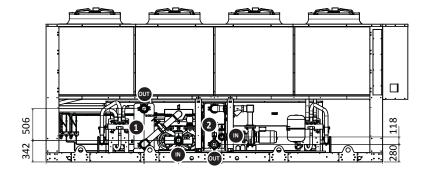

24.5. NRP 1250 HYDRAULIC CONNECTIONS POSITION vers. 00


24.6. NRP 1250 HYDRAULIC CONNECTIONS POSITION vers. P1...P4 | R1...R4


24.7. NRP 1400 - 1500 MINIMUM TECHNICAL SPACES

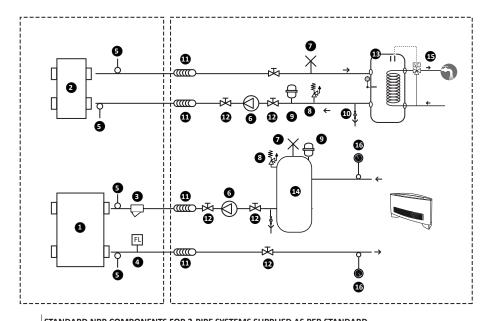

24.8. NRP 1400 - 1500 HYDRAULIC CONNECTIONS POSITION vers. 00


24.9. NRP 1400 - 1500 HYDRAULIC CONNECTIONS POSITION vers. P1...P4|R1...R4


24.10. NRP 1650 - 1800 MINIMUM TECHNICAL SPACES

24.11. NRP 1650 - 1800 HYDRAULIC CONNECTIONS POSITION vers. 00

24.12. NRP 1650 - 1800 HYDRAULIC CONNECTIONS POSITION vers. P1...P4 | R1...R4


 DHW side /heating system side exchanger
 Ø 4" VICTAULIC CONNECTIONS
 Cooling and heating system side exchanger
 Ø 4" VICTAULIC CONNECTIONS

25. **BASIC 2-PIPE SYSTEM HYDRAULIC CIRCUITS**

25.1. HYDRAULIC CIRCUIT INSIDE AND OUTSIDE "00" VERSION NRP

NRP HYDRAULIC **COMPONENTS**

HYDRAULIC COMPONENTS **RECOMMENDED OUTSIDE THE UNIT**

		STANDARD NRP COMPONENTS FOR 2-PIPE SYSTEMS SUPPLIED AS PER STANDARD				
	1	Plate heat exchanger (SYSTEM SIDE)				
	2	Total recovery (DHW SIDE)				
	3	Water filter (supplied)				
	4	Flow switch (mounted)				
	5	Water temperature probes (IN/OUT)				
-		RECOMMENDED COMPONENTS NOT SUPPLIED FOR WHICH INSTALLER IS RESPONSIBLE				
		RECOMMENDED COMPONENTS NOT SUPPLIED FOR WHICH INSTALLER IS RESPONSIBLE				
	6	Pumps				
	7	Air vent valve				
	8	Safety valve				

8	Safety Valve				
9	Expansion vessel				
10	Drain cock				
11	Anti-vibration joints				
12	Cut-off cocks				
13	Domestic hot water storage tank (DHW)				
14	System water storage tank (respect the minimum water content, see TAB 3 or in the event of low				
14	loads envision use to prevent continuous ON/OFF of the compressors)				
15	Thermostatic valve				
16	Manometer				

TAB 3		0800	1000	1250	1400	1500	1650	1800
Number of compressors	n°	4	4	4	4	4	4	4
Minimum water content admitted COLD SIDE		7	7	7	7	7	7	7
Minimum water content admitted the HOT SIDE		7	7	7	7	7	7	7

Recommended water content COOLING SIDE HEATING SIDE	l/kW	14	14	14	14	14	14	14

WATER FEATURES

PH	6-8
Electric conductivity	Less than 200 mV/cm (25°C)
Chloride ions	Less than 50 ppm
Sulphuric acid ions	Less than 50 ppm
Total iron	Less than 0.3 ppm
Alkalinity M	Less than 50 ppm
Total hardness	Less than 50 ppm
Sulphur ions	none
Ammonia ions	None
Silicone ions	Less than 30 ppm

Aermec code 5806765 00 12.02

ATTENTION

The choice and installation of components outside the NRP unit is the installer's responsibility, who must operate according to the code of practice and in compliance with the Standard in force in the country of destination.

ATTENTION

The hydraulic connection pipes to the machine must be suitably dimensioned for the effective water flow rate requested by the system when running. The water flow rate to the heat exchanger must always be constant.

ATTENTION

Wash the system thoroughly before connecting the unit. This cleaning operation will eliminate any residues such as welding drips, scale, rust, or other impurities from the piping. These substances can also deposit inside and cause machine malfunctioning. The connection piping must be adequately supported so that its weight is not borne by the appliance.

ATTENTION

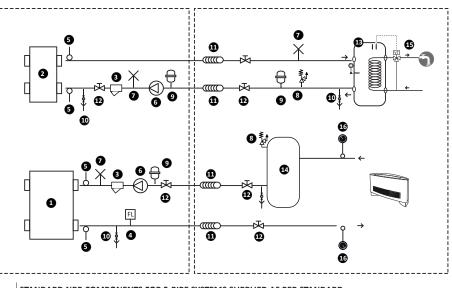
An appropriate load/reintegration system must be prepared, which is engaged on the return line, along with a drain cock in the lowest part of the system. Water disconnectors must be used in systems loaded with anti-freeze or where particular legal provisions apply.

Particular supply/reintegration waters must be conditioned with appropriate treatment systems. The "water features" provided in the table can be used as a reference.

It is prohibited to release water-glycol mixtures into the environment.

A

It is recommended to design systems with high water content (minimum recommended values shown in TAB 3), in order to limit:

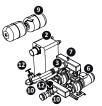

- 1. The hourly number of inversions between operating modes.
- 2. Drop in water temperature during winter defrost cycles.

2-PIPE SYSTEM

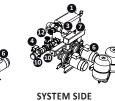
HYDRAULIC CIRCUIT INSIDE AND OUTSIDE NRP VERSION "WITH P1...P4|R1...R4 PUMPS" 25.2.

NRP HYDRAULIC **COMPONENTS**

HYDRAULIC COMPONENTS **RECOMMENDED OUTSIDE THE UNIT**



STANDARD NRP COMPONENTS FOR 2-PIPE SYSTEMS SUPPLIED AS PER STANDARD


	STANDARD MRF COMPONENTS FOR 2-FIFE STSTEMS SOFFELED AS FER STANDARD
1	Plate heat exchanger (SYSTEM SIDE)
2	Total recovery (DHW SIDE)
3	Water filter (mounted)
4	Flow switch (mounted)
5	Water temperature probes (IN/OUT)
6	Pump
7	Air vent valve
9	Expansion vessel
10	Drain cock
12	Cut-off cocks

	RECOMMENDED COMPONENTS NOT SUPPLIED FOR WHI	CH INS	FALLER	IS RESP	ONSIBLE				
8	Safety valve								
11	Anti-vibration joints								
13	Domestic hot water storage tank (DHW)								
14	14 System water storage tank (respect the minimum water content, see TAB 3 or in the event of low loads envision use to prevent continuous ON/OFF of the compressors)								
15	Thermostatic valve								
16	Manometer								
TAB	3		0800	1000	1250	1400	1500	1650	1800
Num	ber of compressors	n°	4	4	4	4	4	4	4
Mini	mum water content admitted COLD SIDE		7	7	7	7	7	7	7
Mini	mum water content admitted the HOT SIDE		7	7	7	7	7	7	7
Reco	mmended water content COOLING SIDE HEATING SIDE	l/kW	14	14	14	14	14	14	14

Vinimum water content admitted the HOT SIDE		7	7	7	7	7
Recommended water content COOLING SIDE HEATING SIDE	l/kW	14	14	14	14	14

DHW SIDE

WATER FEATURES

PH	6-8
Electric conductivity	Less than 200 mV/cm (25°C)
Chloride ions	Less than 50 ppm
Sulphuric acid ions	Less than 50 ppm
Total iron	Less than 0.3 ppm
Alkalinity M	Less than 50 ppm
Total hardness	Less than 50 ppm
Sulphur ions	none
Ammonia ions	None
Silicone ions	Less than 30 ppm

ATTENTION

The choice and installation of components outside the NRP unit is the installer's responsibility, who must operate according to the code of practice and in compliance with the Standard in force in the country of destination.

The hydraulic connection pipes to the machine must be suitably dimensioned for the effective water flow rate requested by the system when running. The water flow rate to the heat exchanger must always be constant.

ATTENTION

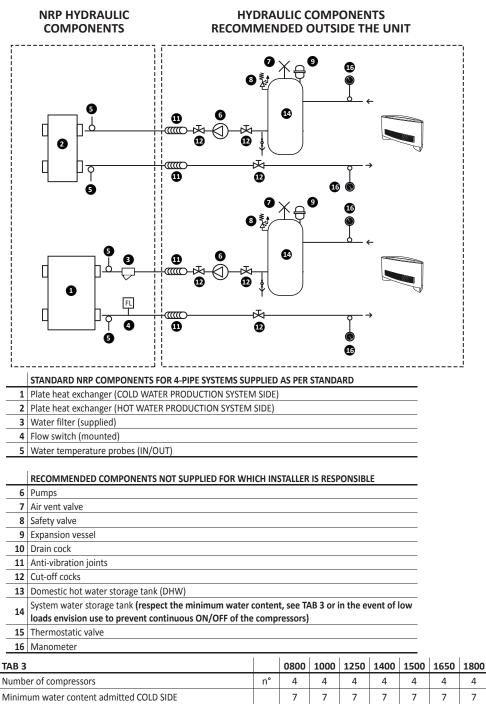
Wash the system thoroughly before connecting the unit. This cleaning operation will eliminate any residues such as welding drips, scale, rust, or other impurities from the piping. These substances can also deposit inside and cause machine malfunctioning. The connection piping must be adequately supported so that its weight is not borne by the appliance.

ATTENTION

An appropriate load/reintegration system must be prepared, which is engaged on the return line, along with a drain cock in the lowest part of the system. Water disconnectors must be used in systems loaded with anti-freeze or where particular legal provisions apply.

Particular supply/reintegration waters must be conditioned with appropriate treatment systems. The "water features" provided in the table can be used as a reference.

It is prohibited to release waterglycol mixtures into the environment.


ATTENTION

It is recommended to design systems with high water content (minimum recommended values shown in TAB 3), in order to limit:

- 1. The hourly number of inversions between operating modes.
- 2. Drop in water temperature during winter defrost cycles.

26. **BASIC 4-PIPE SYSTEM HYDRAULIC CIRCUITS**

INTERNAL AND EXTERNAL HYDRAULIC CIRCUIT TO NRP "00" 26.1.

Minimum water content admitted the HOT SIDE 7 7 7 7 7 Recommended water content COOLING SIDE | HEATING SIDE | I/kW 14 14 14 14 14

WATER FEATURES

PH	6-8
Electric conductivity	Less than 200 mV/cm (25°C)
Chloride ions	Less than 50 ppm
Sulphuric acid ions	Less than 50 ppm
Total iron	Less than 0.3 ppm
Alkalinity M	Less than 50 ppm
Total hardness	Less than 50 ppm
Sulphur ions	none
Ammonia ions	None
Silicone ions	Less than 30 ppm

ATTENTION

The choice and installation of components outside the NRP unit is the installer's responsibility, who must operate according to the code of practice and in compliance with the Standard in force in the country of destination.

The hydraulic connection pipes to the machine must be suitably dimensioned for the effective water flow rate requested by the system when running. The water flow rate to the heat exchanger must always be constant.

ATTENTION

Wash the system thoroughly before connecting the unit. This cleaning operation will eliminate any residues such as welding drips, scale, rust, or other impurities from the piping. These substances can also deposit inside and cause machine malfunctioning. The connection piping must be adequately supported so that its weight is not borne by the appliance.

ATTENTION

An appropriate load/reintegration system must be prepared, which is engaged on the return line, along with a drain cock in the lowest part of the system. Water disconnectors must be used in systems loaded with anti-freeze or where particular legal provisions apply.

Particular supply/reintegration waters must be conditioned with appropriate treatment systems. The "water features" provided in the table can be used as a reference.

4

7

7

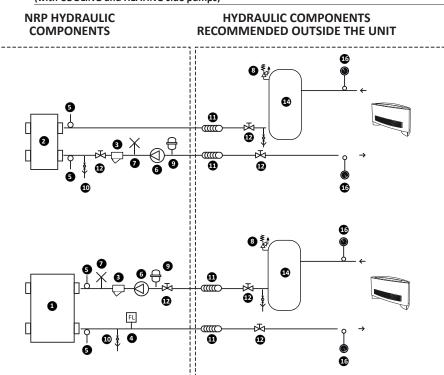
14

7

14

ATTENTION

It is prohibited to release waterglycol mixtures into the environment.

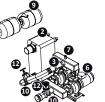


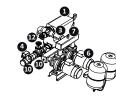
It is recommended to design systems with high water content (minimum recommended values shown in TAB 3), in order to limit:

- 1. The hourly number of inversions between operating modes.
- 2. Drop in water temperature during winter defrost cycles.

4-PIPE SYSTEM

26.2. HYDRAULIC CIRCUIT INSIDE AND OUTSIDE THE NRP "P1...P4 - R1...R4" (with COOLING and HEATING side pumps)


STANDARD NRP COMPONENTS FOR 2-PIPE SYSTEMS SUPPLIED AS PER STANDARD


1	Plate heat exchanger (COLD WATER PRODUCTION SYSTEM SIDE)
2	Plate heat exchanger (HOT WATER PRODUCTION SYSTEM SIDE)
3	Water filter (supplied)
4	Flow switch (mounted)
5	Water temperature probes (IN/OUT)
6	Pumps
7	Air vent valve
9	Expansion vessel
10	Drain cock
12	Cut-off cocks

RECOMMENDED COMPONENTS NOT SUPPLIED FOR WHICH INSTALLER IS RESPONSIBLE

¹⁵ Thermostatic valve

16 Manometer								
ТАВ 3		0800	1000	1250	1400	1500	1650	1800
Number of compressors	n°	4	4	4	4	4	4	4
Minimum water content admitted COLD SIDE		7	7	7	7	7	7	7
Minimum water content admitted the HOT SIDE		7	7	7	7	7	7	7

DHW SIDE

•	â
SYSTEM SID	DE

PH	6-8
Electric conductivity	Less than 200 mV/cm (25°C)
Chloride ions	Less than 50 ppm
Sulphuric acid ions	Less than 50 ppm
Total iron	Less than 0.3 ppm
Alkalinity M	Less than 50 ppm
Total hardness	Less than 50 ppm
Sulphur ions	none
Ammonia ions	None
Silicone ions	Less than 30 ppm

ATTENTION

The choice and installation of components outside the NRP unit is the installer's responsibility, who must operate according to the code of practice and in compliance with the Standard in force in the country of destination.

The hydraulic connection pipes to the machine must be suitably dimensioned for the effective water flow rate requested by the system

when running. The water flow rate to the heat exchanger must always

ATTENTION

be constant.

Wash the system thoroughly before connecting the unit. This cleaning operation will eliminate any residues such as welding drips, scale, rust, or other impurities from the piping. These substances can also deposit inside and cause machine malfunctioning. The connection piping must be adequately supported so that its weight is not borne by the appliance.

ATTENTION

An appropriate load/reintegration system must be prepared, which is engaged on the return line, along with a drain cock in the lowest part of the system. Water disconnectors must be used in systems loaded with anti-freeze or where particular legal provisions apply.

Particular supply/reintegration waters must be conditioned with appropriate treatment systems. The **"water features"** provided in the table can be used as a reference.

14

ATTENTION

It is prohibited to release water-glycol mixtures into the environment.

ATTENTION

It is recommended to design systems with high water content (minimum recommended values shown in **TAB 3**), in order to limit:

- The hourly number of inversions between operating modes.
- 2. Drop in water temperature during winter defrost cycles.

⁸ Safety valve

¹¹ Anti-vibration joints

¹³ Domestic hot water storage tank (DHW)

¹⁴ System water storage tank (respect the minimum water content, see page 24 of the technical manual or in the event of low loads envision use to prevent continuous ON/OFF of the compressors)

ATTENTION

Check the hydraulic sealing of the joints.

ATTENTION

It is recommended to repeat this operation after the appliance has operated for several hours and to periodically check the system pressure. Reintegration must be performed with machine off (pump Off).

26.3. SYSTEM LOADING

Before starting loading, position the unit master switch at OFF

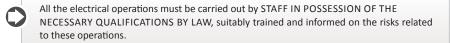
- 1. Check that system drain cock is closed
- 2. Open all system and relative terminals vent valves.
- 3. Open all system cut-off devices
- 4. Start filling by slowly opening the system water load cock, outside the appliance.
- When water starts to escape from the terminal vent valves, close them and continue loading until the envisioned pressure value for the system is reached.

ATTENTION

If the system contains liquid antifreeze, this must not be drained freely, as it is a pollutant. It should be collected and if possible reused.

26.4. SYSTEM LOADING

- 1. Before beginning emptying, place the unit master switch at OFF.
- 2. Check that the system water loading/reintegration cock is closed.
- 3. Open the drain cock outside the appliance and all system and relative terminals vent valves


27. **ELECTRIC CONNECTIONS**

The NRP multipurpose units are completely wired at the factory and only require connection to the electrical mains, downstream from a unit switch, according to that envisioned by the Standards in force on this subject in the country of installation. It Is also advised to check that:

- The electrical mains features are suitable for the 1. input values indicated in the electrical data table, also taking any other machines operating at the same time into consideration.
- The unit must only be powered when installation 2. has been completed (hydraulic and electric).
- 3. Respect the connection indications of the phase and earth wires.
- The power supply line must have a relevant pro-4. tection against short circuits mounted upstream and dispersions to earth, which isolate the system with respect to other utilities.
- 5. The voltage must be within a tolerance of $\pm 10\%$ of the nominal power supply voltage of the machine (for unbalanced three-phase unit max 3% between the phases). Whenever these parameters are not respected, contact the electric energy public body.
- For electric connections, use the cables with 6 double isolation according to the Standards in force on this subject in the different countries.

THE FOLLOWING ARE MANDATORY

- The use of an omnipolar magnet circuit breaker 1. switch is mandatory, in compliance with the IEC-EN Standards (contact opening at least 3 mm), with suitable cut-off power and differential protection on the basis of the electric data table shown below, installed as near as possible to the appliance.
- 2. It is mandatory to make an effective earth connection. The manufacturer is not liable for any damage caused by the lack of or ineffective appliance earth connection.
- For units with three-phase power supply, check 3. the correct connection of the phases.

The features of the electrical lines and of the related components must be determined by STAFF QUALIFIED TO DESIGN ELECTRICAL SYSTEMS, in compliance with the international and national regulations of the place of installation of the unit and in compliance with the regulations in force at the time of installation.

For the installation requirements refer only to the wiring diagram supplied with the appliance. The wiring diagram along with the manuals must be kept in good condition and ALWAYS BE AVAILABLE FOR ANY FUTURE INTERVENTIONS ON THE UNIT.

It is mandatory to verify that the machine is watertight before making the electrical connections and it must only be powered after the hydraulic and electrical works have been completed.

27.1. ELECTRIC DATA TABLE

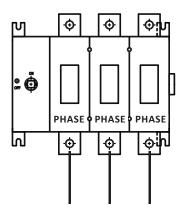
The cable sections shown in the table are recommended for maximum lengths of 50 m.

For longer lengths or different cable laying, it is up to the DESIGN ENGINEER to dimension the appropriate line switch, the power supply line as well

as the connection to the earth wire and connection cables depending on:

- the length;
- the type of cable;
- the absorption of the unit and the physical location and also the environment temperature.

ATTENTION

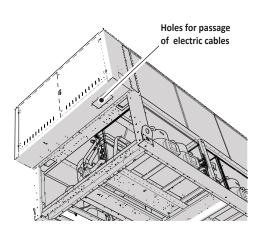

ATTENTION

Check the tightening of all power wire clamps on commissioning and after 30 days from start-up. Successively check them every six months. Loose terminals can cause overheating of the cables and components.

It is prohibited to use the water

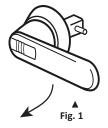
pipes to earth the appliance.

P SIZE	ply	s [n°]	_		TAL PUT	RECOMMENDED CABLE CROSS-SECTION						
NRP	dns	sor	["u]	L.R.A.:	F.L.A.:			SEC. A		SEC. B	EARTH	IL
	Power supply	Compressors	Fans	[A]	[A]	phases [n°]	cables for single phase [n°]	Cable section [mm ²]	Total cables [n°]	[mm²]	[mm²]	[A]
0800	400V/3/50Hz	4	4	348	173	3	1	95	3	1,5	50	200
0900	400V/3/50Hz	4	4	404	195	3	1	95	3	1,5	50	250
1000	400V/3/50Hz	4	4	426	217	3	1	95	3	1,5	50	250
1250	400V/3/50Hz	4	6	535	267	3	1	120	3	1,5	70	315
1400	400V/3/50Hz	5	6	505	296	3	1	120	3	1,5	70	315
1500	400V/3/50Hz	6	6	534	325	3	1	185	3	1,5	95	350
1650	400V/3/50Hz	6	8	633	365	3	2	185	6	1,5	150	400
1800	400V/3/50Hz	6	8	666	398	3	2	185	6	1,5	150	400



KEY

- F.L.I.: Maximum input power
- F.L.A.: Maximum input current
- L.R.A.: Initial starting current Power supply Sec A:
- 3+N: 3 phases + neutral
- Controls and safety device connection Sec B:
- EARTH: Earth wire to connect to unit


Master switch

IL:

ATTENTION:

Before carrying out the controls indicated below, make sure that the unit is disconnected from the mains electricity. Make sure that the master switch is locked in the OFF position and an appropriate sign is affixed. Before starting the operations, use a voltmeter or a phase indicator to check that there is no voltage present.

28. ELECTRIC POWER CONNECTION TO THE ELECTRICAL MAINS

- Before connecting the unit to the power supply mains, make sure that the isolating switch is open.
- 2. Open the front panel.
- Use the plates to pass the main electric power supply cable and the cables of the other external connections under the responsibility of the installer.
- It is prohibited to access positions not specifically envisioned in this manual with electric cables.
- 5. Avoid direct contact with non-insulated copper piping and with the compressor.
- 6. Identify the clamps for the electric connec-

29. CONTROL AND COMMISSIONING

27.2. PREPARATION FOR COMMISSIONING

Please note that, on request by the Aermec customer or the legitimate owner of the machine, the units in this series can be started up by the AERMEC After-Sales Service in your area (valid only on Italian territory). The start of operation must be scheduled in advance based on the frame regarding the realisation of the system. Prior to the intervention, all other works (electrical and hydraulic connections, priming and bleeding of air from the system) must have been completed.

27.3. START - UP

27.3.1. Preliminary operations to be performed with no voltage present

Control:

- 1. All safety conditions have been respected.
- 2. The unit is correctly fixed to the support surface.
- 3. The minimum technical spaces have been respected.
- 4. That the main power supply cables have appropriate cross-section, which can support the total absorption of the unit. (see electric data sections) and that the unit has been duly connected to earth.
- That all the electrical connections have been made correctly and all the clamps adequately tightened.

27.3.2. The following operations are to be carried out when the unit is live.

 Supply power to the unit by turning the master switch to the ON position; see (fig1.) The display will switch on a few seconds after voltage has been supplied; check that the operating status is on OFF (OFF BY KEY B on lower side of the display). tion and always refer exclusively to the wiring diagram supplied with the unit.

- For the functional connection of the unit, take the power supply cable to the electric control board inside the unit and connect it to clamps. L1-L2-L3 and PE respecting the polarities.
- 8. L1-L2-L3 as phases, and PE as earth; see figure.
- 9. Re-position the inspection panels.
- Ensure that all protections removed for the electric connection have been restored before powering the unit electrically.
- 11. Position the system master switch (outside the appliance) at "ON".
- Use a tester to verify that the value of the power supply voltage to the RST phases is equal to 400V ±10%; also verify that the unbalance between phases is no greater than 3%.
- 3. Check that the connections made by the installer are in compliance with the documentation.
- 4. Verify that the compressor sump resistance/s is/ are operating by measuring the increase in temperature of the oil pan. The resistance/s must function for at least 12 hours before start-up of the compressor and in any event, the temperature of the oil pan must be 10-15°C higher than room temperature.

HYDRAULIC CIRCUIT

- Check that all hydraulic connections are made correctly, that the plate indications are complied with and that a mechanical filter has been installed at the evaporator inlet. (Mandatory component for warranty to be valid).
- Make sure that the circulation pump/s is/are operating and that the water flow rate is sufficient to close the flow switch contact.
- Check the water flow rate, measuring the pressure difference between evaporator inlet and outlet and calculate the flow rate using the evaporator pressure drop diagram present in this documentation.
- Check correct operation of the flow meters, if installed; on closing the cut-off valve at the heat exchanger outlet, the unit must display the block. Finally, open the valve and rearm the block.

27.4. MACHINE COMMISSIONING

After having performed all controls stated above, the unit can be started by pressing the ON key. The display shows the temperature of the water and machine operating mode. Check the operating parameters set (set-point) and reset any alarms present. The unit will begin operating after a few minutes.

ATTENTION

Commissioning must be performed with standard settings. Only when the inspection has been completed can the functioning Set Point values by changed. Before start-up, power the unit for at least 12-24 hours, positioning the protection magnet circuit breaker switch and the door lock isolating switch at ON. Make sure that the control panel is off in order to allow the compressor oil sump to heat.

27.4.1. With the machine on, check

COOLING CIRCUIT

CHECK:

- That the compressor input current is lower than the maximum indicated in the technical data table.
- That in models with three-phase power supply, the compressor noise level is not abnormal. If this is the case, invert a phase.
- That the voltage value lies within the pre-fixed limits and that unbalance between the three phases (three-phase power supply) is not above 3%.
- The presence of any refrigerant GAS leaks, particularly in correspondence with the manometers pressure transducers and pressure switches pressure points (vibrations during transportation may have loosened the fittings).
- Overheating

Comparing the temperature read using a contact thermostat positioned on the compressor intake with the temperature shown on the low pressure manometer (saturation temperature corresponding to the evaporation pressure). The difference between these two temperatures gives the overheating value. Optimal values are between 4 and 8°C.

 Pressing line temperature. If the subcooling and overheating values are regular, the temperature measured in the pressing line pipe at the outlet of the compressor must be 30/40°C above the condensation temperature.

CONTROL AND SAFETY DEVICES CHECK:

The manual reset high pressure switch.

That stops the compressor, generating the respective alarm, when the flow pressure exceeds the set-point value. Its correct operation can be controlled by closing the air intake to the exchanger (in cooling mode) and keeping the high pressure manometer under control, check the intervention in correspondence of the calibration value. Attention: if there is no intervention at the calibration value, stop the compressor immediately and check the cause. Reset is manual and can only take place when the pressure drops below the differential value. (For the set and differential values, consult the technical manual).

The anti-freeze control

The anti-freeze control managed by electronic regulation and by the temperature probe located at the evaporator outlet is to prevent the formation of ice when the water flow rate is too low. Correct operation can be checked by progressively increasingly the anti-freeze set-point until it exceeds the outlet water temperature and keeping the water temperature controlled with a high precision thermometer, verify that the unit is off and generates the respective alarm. After this operation, take the anti-freeze set-point back to its original value.

30. OPERATING FEATURES

30.1. SET-POINT IN COOLING MODE

(Factory set) = 7° C, Δ t = 5° C.

30.2. SET-POINT IN HEATING MODE

(Factory set) = 45° C, $\Delta t = 5^{\circ}$ C.

If the unit power supply is restored after a temporary interruption, the mode set will be kept in the memory.

30.3. COMPRESSOR START-UP DELAY

Two functions have been set-up to prevent compressor start-ups that are too close.

- Minimum time from last switch-off 60 seconds in cooling mode.
- Minimum time from last switch-on 300 seconds in heating mode.

30.4. CIRCULATION PUMPS

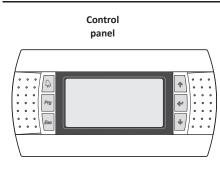
The circuit board envisions outputs for the management of the circulation pumps. The pump side utilities start immediately. After the first 30 seconds of operating, when the water flow rate has gone into normal working conditions, the flow meter control functions are activated (if envisioned). Below find the compressor start-up procedure, by switching the source side pump on, with flow meter check if enabled after 20 seconds. Whenever alarms do not occur, the compressor starts.

30.5. ANTI-FREEZE ALARM

The anti-freeze alarm ¹¹ is active if the machine is off or in stand-by mode. In order to prevent the heat exchanger from breaking due to the water it contains freezing, envision compressor block (if the machine is on below 3.5°C) and ignition of the resistance (if in stand-by below 5°C). If the temperature detected by the probe positioned at heat exchanger output and at chiller inlet is less than +3.8°C.

The intervention of this alarm ¹² determines compressor block and not pump block, which remains active along with the switch-on of the resistance if installed. To restore normal functions, the temperature of the outlet water must rise above the differential. Rearm is manual.

30.6. WATER FLOW RATE ALARM


The unit manages a water flow rate alarm controlled by a pressure switch or flow switch, installed as per standard on the machine. This type of safety device can intervene after the first 30 seconds of pump operation, if the water flow rate is not sufficient. The intervention of this alarm determines compressor and pump block.

¹¹ This anti-freeze set temperature can only be varied by an authorised after-sales centre and only after having checked that there is anti-freeze solution in the water system.

¹² Whenever this alarm intervenes, call the nearest aftersales service immediately.

USER SECTION

¹ ATTENTION:

Only qualified staff can change the language by accessing the assistance menu 🤏

When 20 seconds have passed, it will no longer be possible to modify the language until the next time the board is restarted.

31. SWITCH-ON AND USE OF UNIT

Once the unit has been powered, the control panel will switch on after 30 sec. displaying:

- 1. the window (fig. 1) which will remain active for 6 sec before passing to the window used to select the language (fig. 2)
- 2. The second window makes it possible to select the software language ¹. It will remain active for 20 sec, before passing on to the window/ main menu (fig. 3).

The NRP unit control panel allows to set machine operating parameters and their display quickly.

The display is made up from a 132 x 64 pixel graphical matrix in order to signal the type of operation, displaying set parameters and any alarms that have intervened.

All default settings and any modifications are memorised in the board.

The control panel is represented by a graphical display with six keys for browsing through the displays which are organised in MENUS.

The main display is (fig. 3)

Browsing the various menus/parameters takes place by:

- Pressing the "*Prg*" key to enter the menu selec-1. tion mode.
- Press the " $\uparrow \not \lor \lor$ " keys on the right side of 2. the panel to browse; these keys are also used to modify the selected parameters.

MENU STRUCTURE 31.1.

IN/OUT MENU А

Temperature, pressures, etc... of the various unit components

ON/OFF MENU В

Switches the unit on or off and sets its operating mode (summer/winter) and any time periods

2-PIPE VERSIONS

D

C PLANT MENU Management of the chiller, standard/energy saving work set-point parameters

DHW SYSTEM MENU

Parameters management (set-point, consent, temperature, time periods, etc...)

4-PIPE VERSIONS

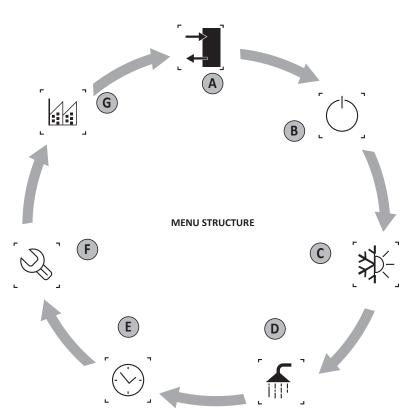
C COOLED WATER MENU Management of the chiller, standard/energy saving set-point parameters in cooling mode D

HOT WATER MENU

Management of the chiller, standard/energy saving set-point parameters in heating mode

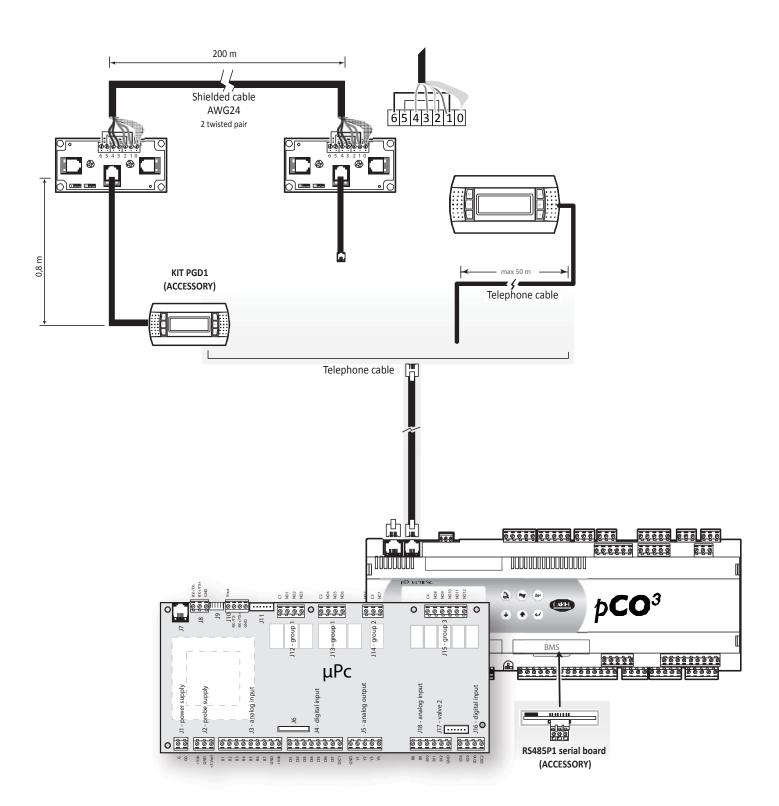
CLOCK MENU Е

Manages all parameters linked to system time (hour, date, etc....)


F SUPPORT MENU

Protects the after-sales assistance menu with password request. G

MANUFACTURER MENU Protects the manufacturer menu with password request


Note

For further information refer to the user manual.

32. ACCESSORY CONNECTIONS

ΕN

ANOMALY	CAUSE	REMEDY				
		Check the presence of voltage				
	No electric voltage	Check the safety systems upstream from the appli-				
		ance				
	Master switch at OFF					
	• Remote switch at OFF (if present)					
	Control panel at OFF	Position at ON				
The unit does not start	Main switch at OFF					
	Compressor magnet circuit breaker at OFF					
	Power supply voltage too low	Check power supply line				
	Remote control switch coil broken	· · · · ·				
	Circuit board broken					
	Peak condenser broken	Replace the component				
	Compressor broken					
	No refrigerant	Check the load and any leaks				
	Dirty coils	Clean the coils				
nsufficient yield	Water filter clogged	Clean the filter				
	Appliance dimensioning	Check				
	Operation outside of operational limits	Check the operational limits using the graphics				
	Liquid return to the compressor	• Chask				
Noisy compressor	Inadequate fixing	Check				
	Inverted phase	Invert a phase				
	Contacts between metal bodies	• Check				
Noise and vibrations	Weak support	• Restore				
	Loose screws	Tighten the screws				
	Excessive flow pressure					
	Low intake pressure					
	Low power supply voltage	Check the operational limits using the graphics				
The compressor stops due to intervention	 Electric connections fastened badly 					
of the protections	Operation outside of operational limits					
	Pressure switch malfunctioning	Replace the component				
	Circuit breaker protection intervention	Check power supply voltage				
		Check electric isolation of the windings				
	High external water temperature	Check the operational limits using the graphics				
	High utility water inlet temperature					
		Check:				
	Insufficient air flow	1. Fan operation				
Compressor high discharge pressure	Insufficient water flow	2. Cleanliness of the coils				
compressor nigh discharge pressure		3. Pump operation (speed)				
		4. Filter cleanliness				
	Fan regulation anomalous operation	Check or replace if broken				
	Air in the hydraulic system	Bleed the circuit				
	Excessive refrigerant gas load	Restore the correct load				
	Low external air temperature	Check the operational limits using the graphics, as				
	Low inlet water temperature	above				
Low discharge pressure	Humidity in the cooling circuit	Empty and restore the gas load				
	Air in the hydraulic system	Bleed the circuit				
	Insufficient gas load	Restore the correct load				
	High external air temperature	Check the operational limits using the graphics				
High intake pressure	High utility inlet water temperature	 Check the operational limits using the graphics Adjust or replace if damaged 				
	Thermostatic expansion valve too open or damaged	Aujust of replace if damaged				
	Low utility water inlet temperature	Check the operational limits using the graphics				
	Low external water inlet temperature	 Check the operational limits using the graphics Adjust or replace if damaged 				
	Thermostatic expansion valve damaged or blocked	- Aujust of replace II udilidged				
Low intake pressure		Check:				
tow make pressure	Insufficient water flow	1. Fan operation				
	 Insufficient water now Insufficient air flow 	2. Cleanliness of the coils				
		3. Pump operation (speed)				
		4. Filter cleanliness				

EN

NRP 0800-1800

NRP 0800-1800

AERMEC S.p.A. 37040 Bevilacqua (VR) Italy–Via Roma, 996 Tel. (+39) 0442 633111 Telefax 0442 93730–(+39) 0442 93566 www.aermec. com - info @ aermec. com

The technical data given in this documentation is not binding. Aermec reserves the right to make all modifications deemed necessary for improving the product at any time.