μC²SE for process chiller

electronic control

User manual

CAREL bases the development of its products on several years' experience in the HVAC field, on continuous investment in technological innovation of the product, on rigorous quality procedures and processes with in-circuit and function tests on 100% of its production, on the most innovative production technologies available on the market. CAREL and its branch offices/affiliates do not guarantee, in any case, that all the aspects of the product and the software included in the product will respond to the demands of the final application, even if the product is built according to state-of-the-art techniques. The client (builder, developer or installer of the final equipment) assumes every responsibility and risk relating to the configuration of the product in order to reach the expected results in relation to the specific final installation and/or equipment. CAREL in this case, through specific agreements, can intervene as consultant for the positive result of the final start-up machine/application, but in no case can it be held responsible for the positive working of the final equipment/apparatus.

The CAREL product is a state-of-the-art product, whose operation is specified in the technical documentation supplied with the product or can be downloaded, even prior to purchase, from the website www .

Each CAREL product, in relation to its advanced technological level, needs a phase of definition / configuration / programming / commissioning so that it can function at its best for the specific application. The lack of such phase of study, as indicated in the manual, can cause the final product to malfunction of which CAREL can not be held responsible.

Only qualified personnel can install or carry out technical assistance interventions on the product. The final client must use the product only in the manner described in the documentation related to the product itself.

Without excluding proper compliance with further warnings present in the manual, it is stressed that in any case it is necessary, for each Product of CAREL:

- To avoid getting the electrical circuits wet. Rain, humidity and all types of liquids or condensation
 contain corrosive mineral substances that can damage the electrical circuits. In any case, the product
 should be used and stored in environments that respect the range of temperature and humidity
 specified in the manual.
- Do not install the device in a particularly hot environment. Temperatures that are too high can shorten
 the duration of the electronic devices, damaging them and distorting or melting the parts in plastic. In
 any case, the product should be used and stored in environments that respect the range of temperature and humidity specified in the manual.
- · Do not try to open the device in any way different than that indicated in the manual.
- Do not drop, hit or shake the device, because the internal circuits and mechanisms could suffer irreparable damage.
- Do not use corrosive chemical products, aggressive solvents or detergents to clean the device.
- Do not use the product in application environments different than those specified in the technical manual

All the above reported suggestions are valid also for the control, serial unit, programming key or nevertheless for any other accessory in the product portfolio of CAREL.

CAREL adopts a policy of continuous development. Therefore, CAREL reserves the right to carry out modifications and improvements on any product described in the present document without prior notice. The technical data in the manual can undergo modifications without obligation to notice.

The liability of CAREL in relation to its own product is regulated by CAREL's general contract conditions edited on the website www.carel. com and/or by specific agreements with clients; in particular, within the criteria consented by the applicable norm, in no way will CAREL, its employees or its branch offices/affiliates be responsible for possible lack of earnings or sales, loss of data and information, cost of substitute goods or services, damage to things or persons, work interruptions, or possible direct, indirect, incidental, patrimonial, of coverage, punitive, special or consequential in any way caused damages, be they contractual, out-of-contract, or due to negligence or other responsibility originating from the installation, use or inability of use of the product, even if CAREL or its branch offices/affiliates have been warned of the possibility of damage.

Disposal of the product

In reference to European Community directive 2002/96/EC issued on 27 January 2003 and the related national legislation, please note that:

- 1. we cannot be disposed of as municipal waste and such waste must be collected and disposed of separately;
- the public or private waste collection systems defined by local legislation must be used. In addition, the equipment can be returned to the distributor at the end of its working life when buying new equipment
- 3. the equipment may contain hazardous substances: the improper use or incorrect disposal of such may have negative effects on human health and on the environment;
- 4. the symbol (crossed-out wheeled bin) shown on the product or on the packaging and on the instruction sheet indicates that the equipment has been introduced onto the market after 13 August 2005 and that it must be disposed of separately;
- in the event of illegal disposal of electrical and electronic waste, the penalties are specified by local waste disposal legislation.

CONTENTS

1. INTRODUCTION	7
1.1 General description	
2. CONNECTIONS	9
2.1 General diagram	
3. APPLICATIONS	10
3.1 AIR/WATER chiller	
4. PARAMETERS	13
4.1 General parameters4.2 Menu structure4.3 Parameter tables	13
5. DESCRIPTION OF THE PARAMETERS	23
6. TABLE OF ALARMS	48
7. CONNECTIONS, ACCESSORIES AND OPTIONS	52
7.1 Connection diagram7.2 Expansion card	
7.3 EVD4*: Electronic expansion valve driver	53
7.4 Fan speed control board (code MCHRTF*)	54 54
7.5 Fan ON/OFF control board (code CONVONOFF0)	54 54 54
7.5 Fan ON/OFF control board (code CONVONOFF0) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans	54 54 54 54
7.5 Fan ON/OFF control board (code CONVONOFF0) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans	54 54 54 54
7.5 Fan ON/OFF control board (code CONVONOFF0) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans (code CONVO/10A0) 7.7 Minimum and maximum fan speed calculation 7.8 Programming key (code PSOPZKEYA0) 7.9 RS485 serial options	54 54 54 55 55
7.5 Fan ON/OFF control board (code CONVONOFF0) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans	54 54 54 55 55
7.5 Fan ON/OFF control board (code CONVONOFFO) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans	54 54 54 55 55 56
7.5 Fan ON/OFF control board (code CONVONOFFO) 7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans (code CONVO/10A0) 7.7 Minimum and maximum fan speed calculation. 7.8 Programming key (code PSOPZKEYAO) 7.9 RS485 serial options. 7.10 Terminals. 8. DIMENSIONS 9. CODES	54 54 54 55 56 56
7.5 Fan ON/OFF control board (code CONVONOFFO)	54 54 54 54 55 55 56 56 57 59

1. INTRODUCTION

1.1 General description

The μ C²SE is a compact CAREL electronic controller, the same size as a normal thermostat, for the complete management of process chillers: it can control air-water and water-water.

1.1.1 Main functions

- · control of the water inlet and evaporator outlet temperature;
- · defrost management by time and/or by temperature or pressure;
- · fan speed control;
- · complete alarm management;
- connection to serial line for supervision/telemaintenance;
- · elimination of the expansion vessel.
- Driver function
- · Management of electronic expansion valves.

1.1.2 Controlled devices

- · compressor;
- · condenser fans;
- · water pumps for evaporator and/or condenser;
- · antifreeze heater;
- · alarm signal device.

1.1.3 Programming

CAREL offers the possibility to configure all the unit parameters not only from the keypad on the front panel, but also using:

- a hardware key;
- a serial line.

1.2 User interface

1.2.1 Display

The display features 3 digits, with the display of the decimal point between -99.9 and 99.9.

Outside of this range of measurement, the value is automatically displayed without the decimal (even if internally the unit still operates considering the decimal part). In normal operation, the value displayed corresponds to the temperature read by probe

B1, that is, the evaporator water inlet temperature.

Fig. 1.a show the symbols present on the display and on the keypad and their meanings.

1.2.2 Symbols on the display

Display with 3 green digits (plus sign and decimal point), amber symbols and red alarm symbols.

symbol	colour	meaning		reference
		with LED ON	with LED flashing	refrigerant circuit
1; 2	amber	compressor 1 and/or 2 ON	start up request	1
1; 3	amber	compressor 3 and/or 3 ON	start up request	2
Α	amber	at least one compressor ON		1/2
В	amber	pump ON	start up request	1/2
C	amber	condenser fan ON		1/2
D	amber	defrost active	defrost request	1/2
E	amber	heater ON		1/2
F	red	alarm active		1/2
G	amber	heat pump mode	heat pump mode request	1/2
Н	amber	chiller mode	chiller mode request	1/2

Fig. 1.a

1.2.3 Functions associated with the buttons

button	unit status	button press
1	Loading default values	press at power ON
	Go up a sub-group inside the programming area, until exiting (saving changes to EEPROM)	press once
	In the event of alarms, mute the buzzer (if present) and deactivate the alarm relay	press once
L	Access the direct parameters	press for 5 s
	Select item inside the programming area and display value of direct parameters/confirm the changes to the parameters	press once
I + L	Program parameters afters entering password	press for 5 s
J	Select top item inside the programming area	press once or press and hold
	Increase value	press once or press and hold
	Switch from standby to chiller mode (P6=0) and vice versa	press for 5 s
	Provides immediate access to the condenser and evaporator pressure and temperature probes and DTE, DTC1-2	press once
K	Select bottom item inside the programming area	press once or press and hold
	Decrease value	press once or press and hold
	Provides immediate access to the condenser and evaporator pressure and temperature probes and DTE, DTC1-2	press once
J + K	Manual alarm reset	press for 5 s
	Immediately reset the hour counter (inside the programming area)	press for 5 s
L+J	Force manual defrost on both circuits	press for 5 s

Table 1.b

1.2.4 Programming and saving the parameters

- 1. press "Prg" and "sel" for 5 seconds;
- 2. the heating and cooling symbol and the figure "00" are displayed;
- 3. use "*" and "*" to set the password (page 28) and confirm by pressing "sel";
 4. use "*" and "*" to select the parameter menu (S-P) or levels (L-P) and then press "sel";
 5. use "*" and "*" to select the parameter group and then press "sel";
- 6. use "**" and "**" to select the parameter and then press "<u>sel</u>";
- 7. after making the changes to the parameter, press "set" to confirm or "Prg" to cancel the changes;
- 8. press "Prg" to return to the previous menu;
- 9. to save the modifications, press "Prg" repeatedly until reaching the main menu.

- a. the parameters that have been modified without being confirmed using the "set" button return to the
- b. if no operations are performed on the keypad for 60 seconds, the controller exits the parameter modification menu by timeout and the changes are cancelled.

1.2.5. Keypad

The keypad is used to set the unit operating values (see Parameters/alarms - Keypad combinations)

2. CONNECTIONS

2.1 General diagram

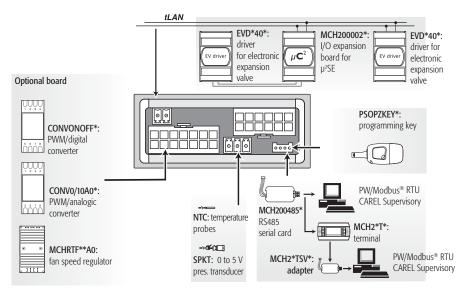
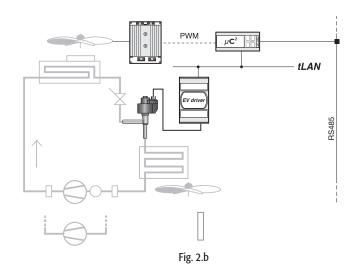
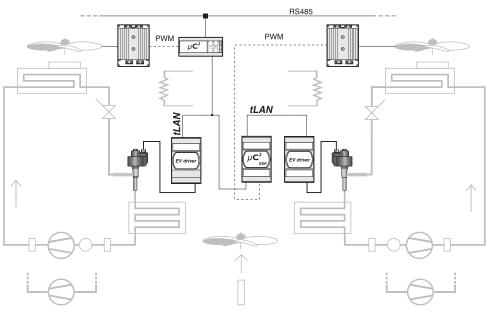
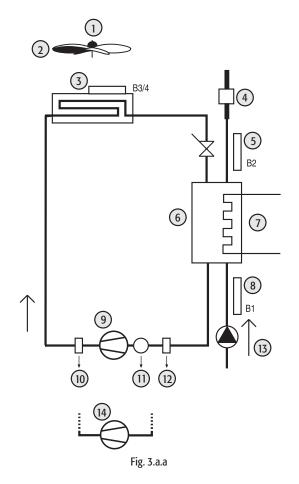



Fig. 2.a

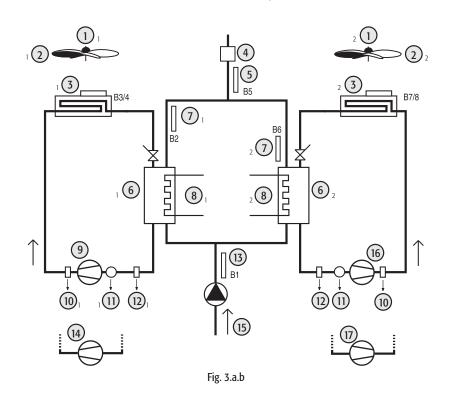
2.2 Network layout



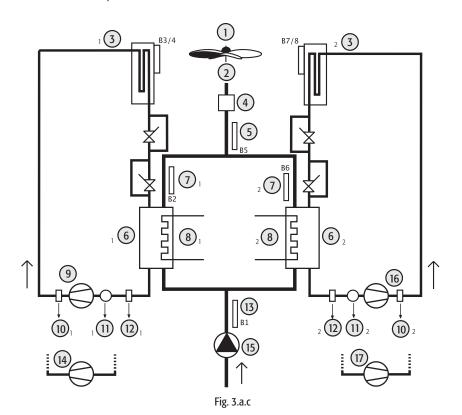

Fig. 2.c

3. APPLICATIONS

3.1 AIR/WATER chiller


3.1.1 Single circuit

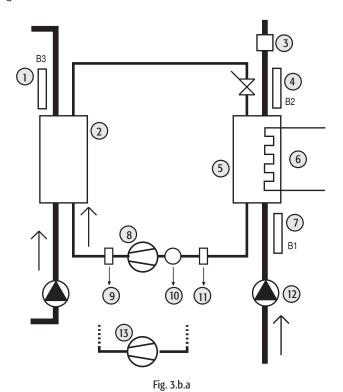
Key:	
1	condernser fan overload
2	fan
3	condenser probe
4	flow switch
5	outlet evaporator probe
6	fan
7	antifreeze heater
8	inlet evaporator probe
9	compressor 1
10	high pressure
11	compressor overload
12	low pressure
13	water pump
14	compressor 2



3.1.2 Two circuits, 2 condenser fan circuits and 2 evaporators

Key: condenser fan overload 1 and 2 fan 1 and 2 condenser probe 1 and 2 flow switch outlet temperature probe evaporator 1 and 2 outlet evaporator probe 1 and 2 antefreeze heater 1 and 2 compressor 1 high pressure 1 and 2 compressor overload 1 and 2 8 9 10 11 low pressure 1and 2 12 13 inlet evaporator probe compressor 2 water pump compressor 3 compressor 4

3.1.3 Two circuits, 1 condenser fan circuit



Key:

1	condenser fan overload
2	fan
3	condenser probe 1 and 2
4	flow switch
5	outlet temperature probe
6	evaporator 1 and 2
7	outlet evaporator probe 1 and 2
8	antifreeze heater 1 and 2
9	compressor 1
10	high pressure 1 and 2
11	compressor overload 1 and 2
12	low pressure 1 and 2
13	inlet evaporator probe
14	compressor 2
15	water pump
16	compressor 3
17	compressor 4

3.2 WATER/WATER chiller

3.2.1 Single circuit

Key:

1	water condensing temperature probe
2	condensator
3	flow switch
4 5 6	outlet evaporator probe
5	evaporator
6	antifreeze heater
7	inlet evaporator probe
8	compressor 1
9	high pressure
10	compressor overload
11	low pressure
12	water pump
13	compressor 2

3.2.2 Two circuits

Key:

1	water condensing temperature probe 1 and 2
2	condensator 1 and 2
3	flow switch
<u>4</u> 5	outlet evaporator probe
5	evaporator
6	antifreeze heater 1 and 2
7	compressor 1
8	high pressure 1 and 2
9	compressor overload 1 and 2
10	low pressure 1 and 2
11	inlet evaporator probe
12	water pump
13	compressor 2
14	compressor 3
15	compressor 4
	· · · · · · · · · · · · · · · · · · ·

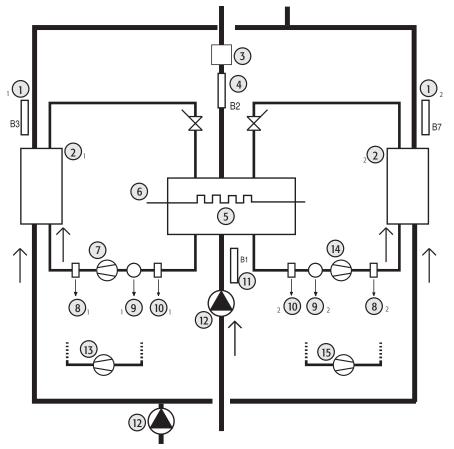


Fig. 3.b.b

3.2.3 Two circuits, 2 evaporators

Fig. 3.b.c

Key:

iccy.	
1	water condensing temperature probe 1 and 2
2	condensator 1 and 2
3	flow switch
4	outlet temperature probe
5	outlet evaporator probe 1 and 2
6	antifreeze heater 1 and 2
7	evaporator
8	water pump
9	compressor 1
10	high pressure 1 and 2
11	compressor overload 1 and 2
12	low pressure 1 and 2
13	compressor 3
14	compressor 2
15	compressor 4
16	inlet evaporator pressure

4. PARAMETERS

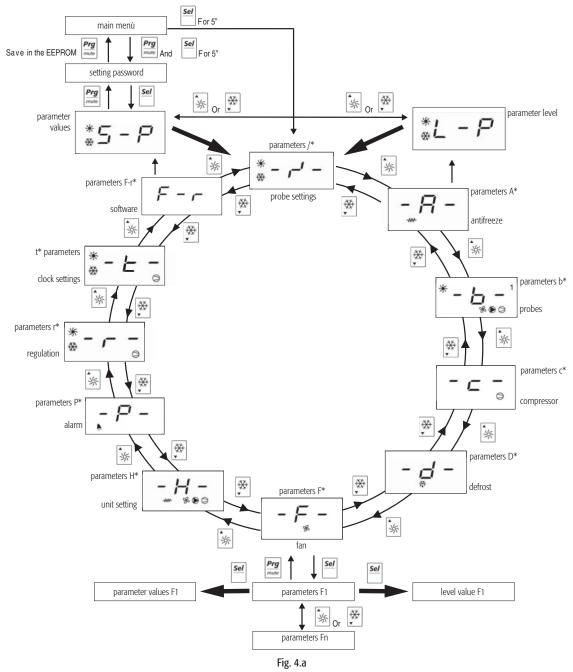
4.1 General parameters

The parameters are divided into 4 different types, according to their level of access by the user (password) and their function.

For each level, only the access to the parameters of the same or lower level can be set. This means that through "factory" password, accessing the menù "levels" (L-P), it is possible to set the

- desired level for each parameter.

 Factory parameters: Accessible with the 66 "Factory" password, allow the configuration of all the unit
- parameters.


 Super User parameters: Accessible with the 11 "Super User" password, allow the configuration
- of the Super User, User and Direct parameters.
- User parameters: Accessible with password 22, allow the configuration of the parameters that typically can be set by the user (User parameters) and the Direct parameters, consequently relating to the options.
- **Direct parameters:** Accessible without password, this are used to read the probe measurements and any data, by any user, without compromising the operation of the unit.

N.B.: The modifications to the parameters regarding the configuration of the unit (type, number of compressors,...) must be performed with the controller in Standby.

ievei	level name	password
d	direct	no password
U	user	22
S	super user	11
F	factory	66

4.2 Menu structure

4.3 Parameter tables

The following tables show of the parameters divided by type/family (e. g. compressor, probes, fans etc.).

• Key to the parameter tables

Level (default)

S= super user

F= factory

D= direct

Visibility:

The visibility of some groups depends on the type of controller and the value of the parameters.

D= defrost (if D01=1)

F= fan (if F01=1)

L= low noise (if F15=1-3)

N = NTC probe (if /04 - /08 = 2)

P= pressure (if /04-/08=3)

V = driver (if H08 = 1-3)

X= expansion (if H08=2-3)

M= pump down (if D17=1)

W= watch (if the clock board is fitted)

- = always present

Supervisor variables:

R/W = supervisor read/write parameter

R= supervisor read-only parameter

4.3.1 Evaporator and condenser temperature and pressure values: (d*)

display	parameter and description	default	min.	max.	UOM	variat.	default	visibility	supervis.	Modbus	variable
indicat.		level							variable		type
dtE	Current value of DTE	D	0	0	-	-	0	-	99 (R)	99	Analog
dC1	Current value of DTC1	D	0	0	-	-	0	-	100 (R)	100	Analog
dC2	Current value of DTC2	D	0	0	-	-	0	-	101 (R)	101	Analog

Tab. 4.a

4.3.2 Probe setting parameters: (/*)

display indicat.	parameter and de	escription	default level	min.	max.	UOM	variat.	default	visibility	supervis. variable	Modbus	variable type
/01	Probe type B1	0= not present	F	0	1	Flag	1	1	-	1 (R/W)	1	Digital
		1= present										
/02	Probe type B2	0= not present	F	0	1	Flag	1	0	-	2 (R/W)	2	Digital
		1= present				_						
/03	Probe type B3	0= not present	F	0	3	int	1	0	-	14 (R/W)	221	Integer
		1= NTC Cond. Probe										
		2= NTC Out. Probe										
		3= differential control probe										
/04	Probe type B4	0= not present	F	0	4	int	1	0	-	15 (R/W)	222	Integer
		1= ON/OFF (D.I)										
		2= NTC Out. Probe										
		3= ratiometric cond. Probe, 5 Vdc										
		4= differential control probe										
/05	Probe type B5	0= not present	F	0	1	Flag	1	0	X	3 (R/W)	3	Digital
		1= present										
/06	Probe type B6	0= not present	F	0	1	Flag	1	0	X	4 (R/W)	4	Digital
		1= present										
/07	Probe type B7	0= not present	F	0	3	int	1	0	X	16 (R/W)	223	Integer
		1= NTC Cond. Probe										
		2= NTC Out. Probe										
		3= differential control probe										
/08	Probe type B8	0= not present	F	0	4	int	1	0	X	17 (R/W)	145	Integer
	(expansion)	1= ON/OFF										
		2= NTC Out. Probe										
		3= ratiometric cond. Probe, 5 Vdc										
		4= differential control probe										
		NB. if more than one differential control probe										
		is configured, the priority is: B8, B7, B4, B3										
/09	Min. value voltage i		F	0	/10	0.01 Vdc	1	50	P	18 (R/W)	225	Integer
/10	Max. value voltage		F	/09	500	0.01 Vdc	1	450	P	19 (R/W)	226	Integer
/11	Pressure min. value		F	0	/12	bar	1	0	Р	1 (R/W)	1	Analog
/12	Pressure max. value		F	/11	999	bar	1	345	P	2 (R/W)	2	Analog
/13	Probe B1 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	-	3 (R/W)	3	Analog
/14	Probe B2 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	-	4 (R/W)	4	Analog
/15	Probe B3 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	-	5 (R/W)	5	Analog
/16	Probe B4 calibration		F	-12.0	12.0			0.0	-	6 (R/W)	6	Analog
/17	Probe B5 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	X	7 (R/W)	7	Analog
/18	Probe B6 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	X	8 (R/W)	8	Analog
/19	Probe B7 calibration		F	-12.0	12.0	°C/°F	0.1	0.0	X	9 (R/W)	9	Analog
/20	Probe B8 calibration	Π	F U	-12.0	12.0	°C/bar/°F	0.1	0.0	Х	10 (R/W)	10	Analog
/21	Digital filter		-	1	15	-	1	4	-	20 (R/W)	227	Integer
/22	Input limitation	0= °C	U		15	Гол	1	8	-	21 (R/W)	228	Integer
/23	Unit of measure		U	0	1	Flag	1	0	-	5 (R/W)	5	Digital
		1= °F										TII 4

Table, 4.b

4.3.3 Antifreeze/support heater setting parameters (A*)

display indicat.	parameter and description	default level	min.	max.	UOM	variat.	default	visibility	supervis. variable	Modbus	variable type
A01	Alarm set point antifreeze/low ambient temperature (air/air)	U	A07	A04	°C/°F	0.1	30	-	11 (R/W)	11	Analog
A02	Differential for antifreeze/low ambient temperature alarm (air/air)	U	3	1220	°C °F	0.1	50	-	12 (R/W)	12	Analog
A03	Bypass time for antifreeze alarm/low ambient temp. when turning on the unit	U	0	150	S	1	0	-	22 (R/W)	229	Integer
	in heating mode										
A05	Diff. for antifreeze heater/auxiliary heater	U	3	500	°C/°F	0.1	10	-	14 (R/W)	14	Analog
A06	Auxiliary heater probe	F	0	1	Flag	1	0	-	6 (R/W)	6	Digital
	0= Control probe see (see Table 5.a)										
	1= Antifreeze probe see (see Table 5.a)										
A07	Antifreeze alarm set point limit	F	-400	1760	°C °F	0.1	-400	-	15 (R/W)	15	Analog
A08	Auxiliary heater set point in heating mode	U	A01	r16	°C °F	0.1	250	AA	16 (R/W)	16	Analog
A08	Antifreeze/support heater set point differential	U	0	200	°C °F	0.1	70	AR	78 (R/W)	78	Analog
A09	Auxiliary heater differential in heating mode	U	3	500	°C/°F	0.1	30	-	17 (R/W)	17	Analog
A10	Antifreeze automatic start up	U	0	3		1	0	-	23 (R/W)	230	Integer
	0= disabled function										
	1= Heaters and pump on at the same time on A4/A8										
	2= Heaters and pump on indipendently on A4/A8										
	3= Heaters ON on A4/A8										
A11	Auxiliary heater 2 set point in heating	U	A01	r16	°C/°F	0.1	250	AA	67 (R/W)	67	Analog
A11	Support heater 2 differential in heating	U	0	200	°C/°F	0.1	70	AR	79 (R/W)	79	Analog
A14	Antifreeze alarm set point from EVD	U	A07	A04	°C/°F	0.1	30	-	82 (R/W)	82	Analog

Table 4.c

4.3.4 Probe reading parameters (b*)

display indicat.	parameter and description	default level	min.	max.	U.O.M.	variat.	default	visibility	supervis. variable	Modbus	variable type
b00	Config. of probe to be shown on the display	U	0	11	N	1	0	-	24 (R/W)	231	integer
	0= probe B1 1= probe B2										
	2= probe B3 3= probe B4										
	4= probe B5 5= probe B6										
	6= probe B7 7= probe B8										
	8= set point without compensation										
	9= dynamic set point with possible compensation										
	10= remote ON/OFF digital input status										
	11= μAD probe										
b01	Value read by probe B1	D	0	0	°C/°F	-	0	-	102 (R)	102	Analog
b02	Value read by probe B2	D	0	0	°C/°F	-	0	-	103 (R)	103	Analog
b03	Value read by probe B3	D	0	0	°C/°F	-	0	-	104 (R)	104	Analog
b04	Value read by probe B4	D	0	0	°C /°F/Dbar	-	0	-	105 (R)	105	Analog
b05	Value read by probe B5	D	0	0	°C /°F	-	0	Х	106 (R)	106	Analog
b06	Value read by probe B6	D	0	0	°C /°F	-	0	Х	107 (R)	107	Analog
b07	Value read by probe B7	D	0	0	°C /°F	-	0	Х	108 (R)	108	Analog
b08	Value read by probe B8	D	0	0	°C /°F/Dbar	-	0	Х	109 (R)	109	Analog
b09	Driver 1 evaporator temperature	D	0	0	°C/°F	-	0	V	110 (R)	110	Analog
b10	Driver 1 evaporator pressure	D	0	0	Dbar	-	0	V	111 (R)	111	Analog
b11	Driver 1 superheating	D	0	0	°C /°F	-	0	V	112 (R)	112	Analog
b12	Driver 1 saturation temperature	D	0	0	°C /°F	-	0	V	113 (R)	113	Analog
b13	Driver 1 valve position	D	0	1000	0/0	-	0	V	114 (R)	114	Analog
b14	Driver 2 evaporator temperature	D	0	0	°C /°F	-	0	XV	115 (R)	115	Analog
b15	Driver 2 evaporator pressure	D	0	0	Dbar	-	0	XV	116 (R)	116	Analog
b16	Driver 2 superheating	D	0	0	°C /°F	-	0	XV	117 (R)	117	Analog
b17	Driver 2 saturation temperature	D	0	0	°C /°F	-	0	XV	118 (R)	118	Analog
b18	Driver 2 valve position	D	0	1000	%	-	0	XV	119 (R)	119	Analog
b19	Temp. probe at the outlet of the external coil c1	D	0	0	°C /°F	-	0	V	120 (R)	120	Analog
b20	Temp. probe at the outlet of the external coil c12	D	0	0	°C /°F	-	0	XV	121 (R)	121	Analog

Table 4.d

4.3.5 Compressor setting parameters (c*)

display indicat.	parameter and description	default level	min.	max.	U.O.M.	variat.	def.	visib.	supervis. variable	Modbus	variabile type
c01	Minimum on time	H	0	999	S	1	60	-	25 (R/W)	232	Integer
c02	Minimum off time	U	0	999	ς	1	60	-	26 (R/W)	233	Integer
c03	Delay between 2 starts of the same compressor	U	0	999	S	1	360	-	27 (R/W)	234	Integer
c04	Delay between starts of the 2 compressors	U	0	999	S	1	10	-	28 (R/W)	235	Integer
c05	Delay between 2 shut-downs of the 2 compressors	U	0	999	S	1	0	-	29 (R/W)	236	Integer
c06	Delay at start-up	U	0	999	S	1	0	-	30 (R/W)	237	Integer
c07	Delay in switching on the compressor after switching on the pump/inlet	U	0	999	S	1	20	-	31 (R/W)	238	Integer
	fan (air/air)										
c08	Delay in switching OFF the compressor after switching OFF the pump/	U	0	150	min	1	1	-	32 (R/W)	239	Integer
	inlet fan (air/air)										
c09	Maximum compressor operating time in tandem	U	0	60	min	1	0	-	33 (R/W)	240	Integer
c10	Compressor 1 timer	D	0	8000	100 hours	-	0	-	122 (R)	122	Analog
c11	Compressor 2 timer	D	0	8000	100 hours	-	0	-	123 (R)	123	Analog
c12	Compressor 3 timer	D	0	8000	100 hours	-	0	-	124 (R)	124	Analog
c13	Compressor 4 timer	D	0	8000	100 hours	-	0	-	125 (R)	125	Analog
c14	Operation timer threshold	U	0	100	100 hours	1	0	-	34 (R/W)	241	Integer
c15	Hour counter evaporator pump/fan 1	D	0	8000	100 hours	-	0	-	126 (R)	126	Analog
c16	Hour counter condenser backup pump/fan 2	D	0	8000	100 hours	-	0	-	127 (R)	127	Analog
c17	Minimum time between 2 pump starts	U	0	150	min	1	30	-	35 (R/W)	242	Integer
c18	Minimum pump ON time	U	0	15	min	1	3	-	36 (R/W)	243	Integer

Table 4.e

4.3.7 Fan setting parameters (F*)

display	parameter and description	default	min.	max.	U.O.M.	variat.	def.	visibility	supervis.	Modbus	variable
indicat.		level							variable		type
F01	Enable Fan output	F	0	1	Flag	1	0	-	10 (R/W)	10	Digital
	0=not present										
	1=present										
F02	Fan operating mode	U	0	3	Int	1	0	F	48 (R/W)	255	Integer
	0= always ON										
	1= depending ON the compressor (in parallel operation mode)										
	2= depending ON the compressors in ON/OFF control										
	3= depending ON the compressors in speed control mode										
F03	Min. voltage threshold for Triac	F	0	F04	step	1	35	F	49 (R/W)	256	Integer
F04	Max. voltage threshold for Triac	F	F03	100	step	1	75	F	50 (R/W)	257	Integer
F05	Speed temp. set point in Cooling mode	U	-400	1760		0.1	350	FN	24 (R/W)	24	Analog
	Pressure value for min. speed Cooling	U	/11	/12	Dbar	0.1	130	FP	23 (R/W)	23	Analog
F06	Differential value for max. speed Cooling	U	0	500	°C/°F	0.1	100	FN	26 (R/W)	26	Analog
	Pressure value for max. speed Cooling	U	0	300	Dbar	0.1	30	FP	25 (R/W)	25	Analog
F07	Fan shut-down differential in Cooling mode	U	0	500	°C/°F	0.1	150	FN	28 (R/W)	28	Analog
	Fan shut-down pressure in Cooling mode	U	0	F05	Dbar	0.1	50	FP	27 (R/W)	27	Analog
F12	Triac impulse duration (fan start)	F	0	10	S	1	2	F	52 (R/W)	259	Integer
F14	Fan with high condensing temperature when starting	U	0	999	-	1	0	FN	91 (R/W)	298	Integer
F15	Low noise activation	U	0	1	-	1	0	F	85 (R/W)	292	Integer
	0= deactivated										
	1= activated in cooling										
F16	Low noise diff. in cooling	F	0	500	°C/°F/bar	0.1	0	L	35 (R/W)	35	Analog

Table 4.g

4.3.8 Unit setting parameters (H*)

display indicat.	parameter and description	default level	min.	max.	U.O.M.		def.	visibility	supervis. variable	Modbus	variable type
H01	Unit model	F	2	4	Flag	2	2	-	54 (R/W)	261	Integer
	2= air_water chiller								` ' '		
	4= water_water chiller										
H02	Number of condensers	U	0	1	Flag	1	0	-	12 (R/W)	12	Digital
	0=1 circuit; 1=2 circuits			'	1.00		ľ		.2 (.4)		5.6
H03	Number of evaporators	F	0	1	Flag	1	0	1-	13 (R/W)	13	Digital
1105	0=1 evaporator; 1=2 evaporators			Ι'	1108	Ι΄.			13 (1911)		Digital
H04	Number of compressors per circuit	F	0	5	Flag	1	0		55 (R/W)	262	Integer
. 10-	0=1 comp. ON 1 circuit (single circuit)	1	U]	i iug	'	0		33 (IV VV)	202	linegei
	1=2 comp. in tandem ON 1 circuit (single circuit)										
	2=1 comp. per circuit, 2 circuits (two circuits)										
	3=2 comp. in Tandem, 2 circuits (two circuits)										
	4=1 compressor and 1 Capacity step in one circuit										
LIOF	5=1 compressor and 1 capacity Step per circuit	F		-	r!	1			FC (DAA)	267	
H05	Pump/outlet fan (Air/Air) mode (output N2)	F	0	3	Flag	l l	1	-	56 (R/W)	263	Integer
	0= absent										
	1= always ON										
	2= ON upon request of the controller										
	3= ON upon request of the controller and for set time										
H06	Cooling/Heating digital input	U	0	1	Flag	1	0	-	14 (R/W)	14	Digital
	0= absent; 1= present										
H07	ON/OFF digital input	U	0	1	Flag	1	0	-	15 (R/W)	15	Digital
	0= absent; 1= present										
H08	μC ² network configuration	F	0	7	Flag	1	4	-	57 (R/W)	264	Integer
	$0 = \mu C^2 SE$ only										
	$1 = \mu C^2 SE + EVD$										
	$2 = \mu C^2 SE + \exp.$										
	$3 = \mu C^2 SE + \exp + EVD$										
	$4 = \mu C^2 SE + I/O$										
	$5 = \mu C^2 SE + EVD + I/O$										
	$6 = \mu C^2 SE + \exp + I/O$										
	$7 = \mu C^2 SE + I/O + EVD + exp.$										
H09	Lock keypad	U	0	1	Flag	1	1	-	16 (R/W)	16	Digital
	0= disabled; 1= enabled			'	1.00		'		(.,)		D 101141
H10	Serial address	U	1	200	-	-	1	-	58 (R/W)	265	Integer
1110	0= use as terminal		1	200			'		30 (IV VV)	203	IIICECI
H11	Output modes (see Table 5.3 and following pag. 56)	F	0	12	Int	1	0	-	59 (R/W)	266	Integer
H12	Capacity-control and reversing valve logic	F	0	3	Flag	1	1	-	60 (R/W)	267	Integer
1112	0= Both normally closed	[0	٦	i iug	'	'		00 (19 00)	207	IIICECI
	1= Both normally open										
	2= Inversion valve normally open and capacity-control valve normally closed										
	3= Inversion valve normally closed and capacity-control valve normally open										
H13	Activate pump down	F	0	1		1	0	V	17 (R/W)	17	Digital
	Activate pump down procesure	F	0	I	- Dhar	0.1	0			17	
H14	Minimum pump down pressure Maximum pump down time	F	0	500	Dbar	0.1	20 30	M	37(R/W)	37	Analog
H15	Maximum pump down time	F		180	S	1		IVI	61 (R/W)	268	Integer
H21	Second pump function	F	0	4	int	1	0	-	62 (R/W)	269	Integer
	0= Disabled										
	1= Backup and weekly rotation										
	2= Backup and daily rotation										
	3= Condensing control on corresponding set point										
	4= Condensing control always on					1					

display indicat.	parameter and description	default level	min.	max.	U.O.M.	variat.	def.	visibility	supervis. variable	Modbus	variable type
H22	Disable load default values	F	0	1	Flag	1	0	-	18 (R/W)	18	Digital
	0= Function disabled										
	1= Function enabled										
H23	Enable Modbus®	F	0	1	Flag	1	0	-	11 (R/W)	11	Digital
H24	Set the mode of high temperature alarm	F	0	3	Flag	1	0	-	124 (R/W)	331	Integer
	0= no stop										
	1= high temperature stops compressor										
	2= low temperature stops compressor										
	3= high and low temperature stops										
H25	Hot as bypass function enable	F	0	1	Flag	1	0	-	25 (R/W)	25	Digital
	0= disable; 1= enable								.,,		
H26	Special stand by mode enable	F	0	1	Flag	1	0	-	26 (R/W)	26	Digital
	0= disable; 1= enable								.,,		

Table 4.h

4.3.9 Firmware parameters (F-r*)

display indicat.	parameter and description	default level	min.	max.	U.O.M.	variat.	default	visibility	supervis. variable	Modbus	variable type
H99	Software version, Driver 2	D	0	999	Int	-	14	-	1 (R)	208	Integer
H98	Software version, Driver 1	D	0	999	Int	-	0	X	2 (R)	209	Integer
H97	Expansion software version	D	0	999	Int	-	0	V	3 (R)	210	Integer
H96	Software version (displayed when powering up the	D	0	999	Int	-	0	XV	4 (R)	211	Integer
	instrument)										
H95	I/O board software version	D	0	999	Int	-	0	-	149 (R)	356	Integer

Table 4.i

4.3.10 Alarm setting parameters (P*)

4.3.10 /	Alarm setting	g parameter	's (P*)											
display indicat.	parameter an	•			default level	min.	max.	U.O.M.	variat.	def.	visibility	supervis. variable	Modbus	variable type
P01	Flow switch ala	arm delay wher	n starting the pump		U	0	150	S	1	20	-	63 (R/W)	270	Integer
P02			ng steady operation		U	0	120	S	1	5	-	64 (R/W)	271	Integer
P03			compressor start-up		U	0	200	S	1	40	-	65 (R/W)	272	Integer
P04			ontrol with high pressur	e	U	0	3	Flag	1	0	P	66 (R/W)	273	Integer
	0= capacity co	ntrol deactivate	ed											
			pressure active											
		ntrol with low p												
Do =		ntrol with high	and low pressure active		-	-		-		-		CT (D 0.4.0		
P05	Alarm reset	2/41.2/11	1		F	0	6	Flag	1	0	-	67 (R/W)	274	Integer
	0= HPI-2/LPI	-2/A1-2/Lt mar	nuai .											
		-2/A1-2/Lt auto												
		2/Lt manual LP												
		nual LP1-2/A1-2												
		-2 manual A1-2		to monting										
			our) manual A1-2/Lt au our) manual; A1-2/Lt ma											
P07			sure probe: 0= Disabled		F	0	1	Flag	1	0	P	68 (R/W)	275	Integer
P08	Digital input 1		sure probe. 0- Disabled	, I— LIIADICU	F	0	23	Int	1	0	-	69 (R/W)	276	Integer
00	0= N		D 514-	TD		0	23		'			05 (19 00)	270	IIICECI
	0= IN 4=TP auto		2=FL auto. 6= TC1 auto.	3=TP man. 7= TC2 man.										
			10= Cool/heat with	11= LA man.										
	o= IC2 duto.	9= COOI/TIEdi	delay	I I = LA IIIdII.										
	12= LA auto.	13= 2° Set	14= 2° Set timer	15= stop defrost c.1										
	16= stop	17= start	18= start defrost c.2	19= step 1										
	defrost c.2	defrost c.1	10— Start dell'05t C.2	13— 31CP 1										
			22= step 4	23= remote ON/OFF										
P09	Digital input 2		1	1-0 10111010 014 011	F	0	23	Int	1	0	-	70 (R/W)	277	Integer
P10	Digital input 6				F	0	23	Int	1	0	Х	71 (R/W)	278	Integer
P11	Digital input 7				F	0	23	Int	1	0	Х	72 (R/W)	279	Integer
P12	Digital input 10) selection			F	0	23	Int	1	0	Χ	73 (R/W)	280	Integer
P13	Configuration	of B4 as P8 if /4	1=1 (digital input)		F	0	23	Int	1	0	-	74 (R/W)	281	Integer
P14	Configuration	of B8 as /8=1 (digital input)		F	0	23	Int	1	0	X	75 (R/W)	282	Integer
P15	Select low pre				F	0	1	Flag	1	0	-	76 (R/W)	283	Integer
		with compresso												
		compressor Of	F											
P16	High temperat				U	-400	1760	°C/°F	0.1	280	AA	38 (R/W)	38	Analog
P17		ure alarm delay			U F	0	250	S	1	30	- D	77 (R/W)	284	Integer
P18 P19		alarm set from			U	P33 -400	999 1760	Dbar °C/°F	0.1	200	P AA	39 (R/W)	39 40	Analog
P20		mperature alarr	n set point tion: 0= Disabled; 1= Er	ahlad	U	0	1/60	Flag	1	0	AA -	40 (R/W) 20 (R/W)	20	Analog Digital
P21			normally de-activated; 1=		F	0	1	l lag	1	0	-	8 (R/W)	8	Digital
P22		alarm delay at s		- Horrially activated	Ü	0	200	S	1	40	-	86 (R/W)	293	Integer
22	Compressor in		nair ap			0	200		'	10		00 (19 11)	255	IIICECI
23			compressor start-up in d	efrost	U	0	999	S	1	40	-	87 (R/W)	294	Integer
24			HP and LP capacity-cont		D	0	1	-	1	0	Р	21 (R/W)	21	Digital
25	Select digital o	utput 2	Lapacity cont		F	0	11	Int	1	0	-	108 (R/W)	315	Integer
26	Select digital o				F	0	11	Int	1	0	-	109 (R/W)	316	Integer
27	Select digital o				F	0	11	Int	1	0	-	110 (R/W)	317	Integer
28	Select digital o	utput 5			F	0	11	Int	1	0	-	111 (R/W)	318	Integer
29	Select digital o				F	0	12	Int	1	0	X	112 (R/W)	319	Integer
P30	Select digital o				F	0	12	Int	1	0	Х	113 (R/W)	320	Integer
P31	Select digital o				F	0	12	Int	1	0	Х	114 (R/W)	321	Integer
P32	Select digital o	utput 10			F	0	12	Int	1	0	Χ	115 (R/W)	322	Integer

display	parameter and description	default	min.	max.	U.O.M.	variat.	def.	visibility	supervis.	Modbus	variable
indicat.		level							variable		type
P33	Low pressure alarm threshold	F	0	P18	Dbar	0.1	10	P	76 (R/W)	76	Analog
P34	Select digital input 5	F	0	23	Int	1	23	-	122 (R/W)	329	Integer
P35	Mute alarm with "mute" button: 0= no; 1= yes	F	0	1	-	1	0	-	23 (R/W)	23	Digital
P36	Type of high pressure alarm management	F	0	1	-	1	0	-	24 (R/W)	24	Digital
	0= always; 1= only if compressor active and 2 s after activation										
P37	Select digital input 11	F	0	10	Int	1	0	-	138 (R/W)	345	Integer
P38	Select digital input 12	F	0	10	Int	1	0	-	139 (R/W)	346	Integer
P39	Select digital input 13	F	0	10	Int	1	0	-	140 (R/W)	347	Integer
P40	Select digital input 14	F	0	10	Int	1	0	-	141 (R/W)	348	Integer
P41	Select digital input 15	F	0	10	Int	1	0	-	142 (R/W)	349	Integer
P42	Select digital output 11	F	0	18	Int	1	0	-	143 (R/W)	350	Integer
P43	Select digital output 12	F	0	18	Int	1	0	-	144(R/W)	351	Integer
P44	Select digital output 13	F	0	18	Int	1	0	-	145 (R/W)	352	Integer
P45	Select digital output 14	F	0	18	Int	1	0	-	146 (R/W)	353	Integer
P46	Select digital output 15	F	0	18	Int	1	0	-	147 (R/W)	354	Integer

Table 4.i

4.3.11 Control setting parameters (r*)

display indicat.	parameter and description	default level	min.	max.	U.O.M.	variat.	def.	visibility	supervis. variable	Modbus	type
r01	Cooling set point	D	r13	r14	°C/°F	0.1	12.0	-	41 (R/W)	41	Analog
r02	Cooling differential	D	1	500	°C/°F	0.1	30	-	42 (R/W)	42	Analog
r05	Compressor rotation	F	0	3	Flag	1	0	-	78 (R/W)	285	Integer
	0= disabled;										
	1= FIFO type										
	2= con controllo ore/hour control										
	3= direct relation between (D.I. and compressors D.O.)										
r06	Type of compressor control	F	0	4	Flag	1	0	-	79 (R/W)	286	Integer
	0= proportional on inlet										_
	1= proportional on inlet + dead zone										
	2= proportional on outlet										
	3= proportional on outlet + dead zone										
	4= time on outlet with dead zone										
r07	Dead zone differential	F	1	500	°C/°F	0.1	20	-	45 (R/W)	45	Analog
r08	Maximum control output activation time	F	0	999	S	1	120	-	80 (R/W)	287	Integer
r09	Minimum control output activation time	F	0	999	S	1	100	-	81 (R/W)	288	Integer
r10	Maximum control output deactivation time	F	0	999	S	1	120	-	82 (R/W)	289	Integer
r11	Minimum control output deactivation time	F	0	999	S	1	100	-	83 (R/W)	290	Integer
r12	Compressor deactivation differential	F	0	500	°C/°F	0.1	20	-	46 (R/W)	46	Analog
r13	Minimum set point in Cooling	U	-400	r14	°C/°F	0.1	-400	-	47 (R/W)	47	Analog
r14	Max. Cooling set point	U	r13	1760	°C/°F	0.1	800	-	48 (R/W)	48	Analog
r17	Cooling compensation constant	U	-50	50	-	0.1	0	-	51 (R/W)	51	Analog
r18	Maximum distance from the set point	U	3	200	°C/°F	0.1	3	-	52 (R/W)	52	Analog
r19	Start compensation temperature in cooling mode	U	-400	1760	°C/°F	0.1	300	-	53 (R/W)	53	Analog
r20	Start compensation temperature in heating mode	U	-400	1760	°C/°F	0.1	0	-	54 (R/W)	54	Analog
r21	Second cooling set point from external contact	D	r13	r14	°C/°F	0.1	120	-	55 (R/W)	55	Analog
r25	Outside temp set point to stop compressors	D	-400	800	°C/°F	0.1	-400	-	65 (R/W)	65	Analog
r27	Enable accumulation vessel suppression	F	0	3	Flag	1	0	-	88 (R/W)	295	Integer
	0= Disabled										
	1= Enabled in cool										
	2= Enabled in Heat										
	3= Always enabled										
r28	Min. compressor running time for low load/damper travel time	F	0	999	S	1	60	-	89 (R/W)	296	Integer
r29	Chiller low load differential/freecooling differential	F	10	500	°C/°F	0.1	30	-	58 (R/W)	58	Analog
r30	Heat pump low load differential/freeheating differential	F	10	500	°C/°F	0.1	30	-	59 (R/W)	59	Analog
r43	Heater set point	F	0	7	-	1	7	-	121 (R/W)	328	Integer
	0= A4, A8, A11, P16, P19 absolute values								.,,		
	1= A4, P16, P19 absolute value, A8 and A11 relative values										
	2= A8, A11, P16, P19 absolute values, A4 relative value										
	3= P16, P19 absolute values; A4, A8, A11 relative values										
	4= A4, A8, A11 absolute values; P16, P19 relative values										
	5= A4 absolute value, A8, A11, P16, P19 relative values										
	6= A8, A11 absolute values; A4, P16, P19 relative values										
	7= A4, A8, A11, P16, P19 relative values										
r45	Maximum value of calculated set point in relative regulation	D	r46	1760	°C/°F	0.1	300	-	84 (R/W)	84	Analog
r46	Minimum value of calculated set point in relative regulation	F	-400	r45	°C/°F	0.1	100	-		85	Analog
r47	Set point for relative regulation	D	-400	1760	°C/°F	0.1	30	-		86	Analog
r48	Differential for relative regulation	F	0	500	°C/°F	0.1	10	-		87	Analog
1 10	Philefeliaarior relative regulation		10	1300	_ Y '	10.1	10		107 (19 VV)	01	7 11 1010 8

Table 4.k

4.3.12 Timer setting parameters (t*)

display indicat.	parameter and description	default level	min.	max.	U.M.	variat.	def.	visibility	supervis. variable	Modbus	variabile type
t01	RTC hours	U	0	23	h	1	0	W	129(R/W)	336	Integer
t02	RTC minutes	U	0	59	min	1	0	W	130 (R/W)	337	Integer
t03	RTC day	U	1	31	g	1	1	W	131 (R/W)	338	Integer
t04	RTC month	U	1	12	mesi	1	1	W	132 (R/W)	339	Integer
t05	RTC year	U	0	99	anni	1	6	W	133 (R/W)	340	Integer
t06	Start hours for 2nd set point in cooling	U	0	23	h	1	0	W	92 (R/W)	299	Integer
t07	Start minutes for 2nd set point in cooling	U	0	59	min	1	0	W	93 (R/W)	300	Integer
t08	End hours for 2nd set point in cooling	U	0	23	h	1	0	W	94 (R/W)	301	Integer
t09	End minutes for 2nd set point in cooling	U	0	59	min	1	0	W	95 (R/W)	302	Integer
t13	End minutes for 2nd set point in heating	U	0	59	min	1	0	W	99 (R/W)	306	Integer
t14	Start hours for 2nd low-noise in cooling	U	0	23	h	1	23	W	100 (R/W)	307	Integer
t15	Start minutes for 2nd low-noise in cooling	U	0	59	min	1	0	W	101 (R/W)	308	Integer
t16	End hours for 2nd low-noise in cooling	U	0	23	h	1	7	W	102 (R/W)	309	Integer
t17	End minutes for 2nd low-noise in cooling	U	0	59	min	1	0	W	103 (R/W)	310	Integer

Table 4.l

4.3.13 Supervisor-only variables

isplay ndicat.	parameter and description	default level	min.	max.	U.O.M	variat.	def.	visibility	supervis. variable	Modbus	variable type
	Show machine parameters (communication & SV CAREL)	F	0	250		-	167		148 (R)	355	Integer
	Circuit 1 alarm	D	0	1		-	0		41 (R)	41	Digital
	Circuit 2 alarm	D	0	1		-	0		42 (R)	42	Digital
	EVD valve 1 alarm	D	0	1		-	0		43 (R)	43	Digital
	EVD valve 2 alarm	D	0	1		-	0		44 (R)	44	Digital
	General alarm	D	0	1		-	0		45 (R)	45	Digital
	Probe alarm	D	0	1		-	0		46 (R)	46	Digital
	Compressor warning	D	0	1		-	0		47 (R)	47	Digital
	EVD 1 warning	D	0	1		-	0		48 (R)	48	Digital
	EVD 2 warning	D	0	1		-	0		49 (R)	49	Digital
	General warning	D	0	1		-	0		50 (R)	50	Digital
	Temperature warning	D	0	1		-	0		51 (R)	51	Digital
	Fan warning	D	0	1		-	0		52 (R)	52	Digital
	DTE/DTC alarm	D	0	1		-	0		77 (R)	77	Digital
	Digital input 1	D	0	1		-	0		53 (R)	53	Digital
	Digital input 2	D	0	1		-	0		54 (R)	54	Digital
	Digital input 3	D	0	1		1-	0		55 (R)	55	Digital
	Digital input 4	D	0	1		1_	0		56 (R)	56	Digital
	Digital input 5	D	0	1		1-	0		57 (R)	57	Digital
	Digital input B4	D	0	1		1-	0		58 (R)	58	Digital
	Digital input 1	D	0	1		1	0		59 (R/W)	59	Digital
	Digital input 2	D	0	1		1	0		60 (R/W)	60	Digital
	Digital input 3	D	0	1		1	0		61 (R/W)	61	Digital
	Digital input 4	D	0	1		1	0		62 (R/W)	62	Digital
		D	0	1		1					
	Digital input 5	D	0	1		1	0		63 (R/W)	63	Digital
	Standby/On status	טן	0	1			0		64 (R/W)	64	Digital
	0= Standby										
	1= On								(=		
	Heating/Cooling status:	D	0	1		1	1		65 (R/W)	65	Digital
	0= Heating										
	1= Cooling										
	Gain constant for probe 1 calibration	F	0	8000		-	1000		5 (R)	212	Integer
	Gain constant for probe 2 calibration	F	0	8000		-	1000		6 (R)	213	Integer
	Gain constant for probe 3 calibration	F	0	8000		-	1000		7 (R)	214	Integer
	Gain constant for probe 4 calibration	F	0	8000		-	1000		8 (R)	215	Integer
	Offset constant for pressure probe calibration	F	0	16000		-	1000		150 (R)	357	Integer
	Offset constant for probe 1 calibration	F	-8000	8000		-	0		9 (R)	216	Integer
	Offset constant for probe 2 calibration	F	-8000	8000		-	0		10 (R)	217	Integer
	Offset constant for probe 3 calibration	F		8000		-	0		11 (R)	218	Integer
	Offset constant for probe 4 calibration	F		8000		-	0		12 (R)	219	Integer
	Gain constant for pressure probe calibration	F	-8000			-	0		151 (R)	358	Integer
	Compressor 1 operating hours	D	0	8000		1-	0		152 (R)	359	Integer
	Compressor 2 operating hours	D	0	8000		1-	0		153 (R)	360	Integer
	Compressor 3 operating hours	D	0	8000		-	0		154 (R)	361	Integer
	Compressor 4 operating hours	D	0	8000		-	0		155 (R)	362	Integer
	Compressor pump operating hours	D	0	8000		-	0		156 (R)	363	Integer
	Evaporator pump operating hours	D	0	8000		-	0		157 (R)	364	Integer
	Digital input 6	D	0	1		+-	0		66 (R)	66	Digital
	Digital input 6 Digital input 7	D	0	1		1	0		67 (R)	67	Digital
	Digital input 8	D	0	1		1	0		68 (R)	68	Digital
	Digital input 8 Digital input 9	D	0	1		+	0		69 (R)	69	
		D D	0	1		+			70 (R)		Digital
	Digital input 10			1		+	0	1	70 (R)	70	Digital
	Digital input B8	D	0	1		1	0		71 (R)	71	Digital
	Digital output 6	D	0	1		1	0		72 (R/W)	72	Digital
	Digital output 7	D	0	1		1	0		73 (R/W)	73	Digital
	Digital output 8	D	0			11	0	1	74 (R/W)	74	Digital
	Digital output 9	D	0	1		1	0	1	75 (R/W)	75	Digital
	Digital output 10	D	0	1		1	0		76 (R/W)	76	Digital
	Digital input 11	D	0	1		-	0		80 (R)	80	Digital
	Digital input 12	D	0	1		-	0		81 (R)	81	Digital
	Digital input 13	D	0	1		-	0		82 (R)	82	Digital
	Digital input 14	D	0	1		-	0		83 (R)	83	Digital
	Digital input 15	D	0	1		-	0		84 (R)	84	Digital

4.3.13 Supervisor-only variables

display indicat.	parameter and description	default level	min.	max.	U.O.M	variat.	def.	visibility	supervis. variable	Modbus	variable type
-	Digital input B12	D	0	1		-	0		85 (R)	85	Digital
-	Digital output 11	D	0	1		1	0		86 (R/W)	86	Digital
-	Digital output 12 Digital output 13 Digital output 14		0	1		1	0		87 (R/W)	87	Digital
-			0	1		1	0		88 (R/W)	88	Digital
-			0	1			0		89 (R/W)	89	Digital
-	Digital output 15	D	0	1		1	0		90 (R/W)	90	Digital
-	Password to control outputs from the supervisor	D	0	8000		1	0		13 (R/W)	220	Integer
-	Defrost status	D	0	255		-	0		134 (R)	341	Integer
-	bit 0= Defrost circuit 1										Ü
-	bit 1= Defrost circuit 2										
-	bit 2= Fan Defrost circuit 1										
_	bit 3= Fan Defrost circuit 2										
-	Controls from the UAD:	D	0	1023		1	0		135 (R/W)	342	Integer
	bit0= terminal status (0= not connected; 1= available)	_							(,,,,,	-	
	bit2; bit1= mode set from µAD (00= AUTO; 01= cooling; 10=										
	heating)										
	bit3= enable dehumidification										
	bit4= enable humidification										
	bit5= terminal probe alarm										
	bit6= activate boiler output										
	bit7= 0= process mode active; 1= process mode disabled										
	Signals to the µAD	D	0	255		_	0		136 (R)	343	Integer
_	bit0= cool/heat request from uAD in progress	D	0	233			0		130 (11)	343	integer
	bit1= cool/heat request accepted from µAD (1= cooling; 0=										
	heating)										
	bit2= start fans										
	bit3= alarm active on μCH										
	bit4= RTC available on μCH2 SE	D		0		_			00 (D)	00	A I
-	DTE value saved in EEPROM	D D	0	0		-	0		98 (R)	98	Analog
-	Internal set point compensated in the event of autotuning	_	0	0		-			97 (R)	97	Analog
	Ambient set point (from μAD)	D	-400	1760		0,1	0		95 (R/W)	95	Analog
	Set point variation from µAM (µedronic)	D D	-100	100		0,1	0		96 (R/W)	96	Analog
	Differential for the ambient set point		-100	100		0,1	0		94 (R/W)	94	Analog
	Controls by the µAD from save	D D	0	32767		1	0	-	137 (R/W)	344	Integer
-	Active alarm signal:	D	0	32767			0	-	128 (R/W)	335	Integer
	bit0= probe alarm (E1,E2,E,E4,E5,E6,E7,E8)										
	bit1= high pressure alarm (HP1, HP2)										
	bit2= low pressure alarm (LP1, LP2)										
	bit3= flow switch alarm (FL)										
	bit4= expansion communication alarm (ESP)										
	bit5= EE2PROM alarm (EPB)										
	bit6= antifreeze alarm (A1, A2)										
	bit7= thermal overload alarm (TP, TP1, TP2)										
	bit8= hour counter alarm (H1, H2, H, H4)"										
-	Terminal humidity probe (per terminal µAD)	D	0	1000	%	0,1	0		129 (R/W)	129	Analog
-	Reset alarms	D	0	1		1	0		78 (R/W)	78	Digital
-	Digital input B	D	0	1		-	0		79 (R)	79	Digital
-	Compatibility with the test	F	0	1		1	0		19 (R/W)	19	Digital
-	Dummy digital	F	0	0		-	0		22 (R)	22	Digital
-	Dummy integer	F	0	0		-	0		123 (R/W)	330	Integer
-	Dummy analog	F	0	0		-	0		133 (R)	133	Analog

Table 4.m

5. DESCRIPTION OF THE PARAMETERS

To modify the parameters, see chapter 4 "Parameters."

• Probe settings: parameters (/*) (see Table 4.a)

- Type of probe: from /01 to /08: enables the reading of the corresponding analogue input or sets the function

· Functions of the probes

Туре	e of unit Parameter H01	Temp. control probe 1st circuit	Antifreeze probe 1st circuit	Cond. temp. probe	Press probe 1st circuit 2nd evaporator	Antifreeze probe 2 nd circuit	Cond. temp. probe	Press. probe 2 nd circuit
2=	air/water Chiller	B1/B2 single circuit (B1/B5 two circuits)	B2	B3	B4	B6	B7	B8
4=	water/water Chiller	B1/B2 single circuit (B1/B5 two circuits)	B2	Not used	Not used	B6	Not used	Not used
11=	Cooling-only air-air unit with electric heating	B1	B2 (low outlet temperature)	B3	B4	Not used	B7	B8

Table 5.a

- Min/max voltage and pressure values

From /09 to /12: sets the minimum/maximum voltage and pressure for the ratiometric signal.

- Probe calibration

From /13 to /20: calibrates the corresponding sensor (from B1 to B8).

- Digital filter

/21: Establishes the coefficient used in the digital filtering of the value measured. High values for this parameter will eliminate any continuous disturbance at the analogue inputs (however decrease the promptness of measurement). The recommended value is 4 (default).

- Input limit

/22: Establishes the maximum variation that can be measured by the probes in one unit program cycle; in practice, the maximum variations allowed in the measurement are between 0. 1 and 1.5 units (bars, °C or °F, depending on the probe and the unit of measure) approximately every one second. Low values for this parameter will limit the effect of impulsive disturbance. Recommended value 8 (default).

- Unit of measure

/23: Selects the unit of measure as degrees centigrade or Fahrenheit. When the parameter is modified, the μ C²SE automatically converts the values read by the NTC temperature probes B1, B2, B3 into the new unit of measure; while all the other parameters set (set point, differential etc.) remain unchanged.

• Antifreeze, auxiliary heater: parameters (A*)

- Antifreeze alarm set point

A01: when probe B2 is installed on the coil represents the temperature (antifreeze set point) of the water at the evaporator outlet below which an antifreeze alarm is activated; in this condition the compressors corresponding to the circuit in question are stopped, while the pump remains on to decrease the possibility of freezing. The alarm is reset manually (or automatically, depending on parameter P05) only when the water temperature returns within the operating limits (that is, above A01+A02).

- Antifreeze alarm differential

A02: This represents the differential for the activation of the antifreeze alarm; the alarm condition cannot be reset until the temperature exceeds the set point + differential (A01+A02 or A14+A02).

- Antifreeze alarm bypass time low room temperature from unit start in heating mode

A03: This represents the delay in the activation of the antifreeze alarm when starting the system.

- Auxiliary heater probe in heating

A06: This determines which probe is used for control the auxiliary heater. The meaning of the parameter is the following:

 $A06 = 0 \Rightarrow$ Control probe see Table 5.a.a

A06 = 1 => Antifreeze probe see Table 5.a.a

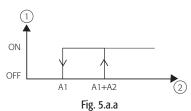
Not valid if A10= 2

- Antifreeze alarm set point limit

A07: Establishes the minimum limit for setting the antifreeze alarm set point (A01).

- Heating (electrical heater or hot gas bypass) set point

A08: Represents the threshold below which the heating function is activated.


The set point in heating is compensated according to the following equation:

The heating function could be realized by electrical heater or hot gas bypass valve. The set point in heating is compensated according to the following equation:

Set heaters (heating) = A08 + (Compensated set point - Set point set)

A08 could both be absolute value or relative value to set point according to the parameter r43.

Example of antifreeze/outlet limit management

Key:

1. freecooling or comp

2. probe B2

- Heating differential

A09: Represents the differential for the activation/deactivation of the heating function

- Automatic switch-on

A10: This parameter is valid when the unit is in standby.

The operating mode switchover delay times are ignored.

A10=0: function not enabled

A10=1: heating function and pump are ON at the same time when the temperature is below A04

A10=2: heating function and compressor are ON at the same time when the temperature is below A04

(use for hot gas bypass)

A10=3: heating function automatically switches on whne the temperature is below A04

In this case, the display will be as follows:

- operating mode LED OFF;
- cooling heating flag not switched (not detected by the supervisor);
- antifreeze alarm A01 (remains active even at the end of the special operation if the unit was previously ON, deactivated by manual reset or in standby).

A10=3: heaters ON based on the respective set point A04 and A08.

Do not use with H1 = 6

- Antifreeze heater 2 set point in defrost/auxiliary in heating

A11: Heater 2 set point in heating, the control of the auxiliary heaters has been separated, each having its own activation set point (see A08).

- Dirty filter signal set point (air/air units only)

A12: Set point for the dirty filter signal based on B1-B2, the deactivation differential is A05

- Valid in the following conditions:
- · air-air units;
- B1 is configured;
- · outlet limit active;
- · freecooling not active;
- at least 1 compressor ON

The warning is reset automatically in the following conditions:

- · air-air units;
- B1 is configured;
- · outlet limit active;
- · freecooling not active.

- Outlet limit set point in freecooling conditions

A13: With freecooling active, and only when the compressors are off, this represents the outlet limit. When the compressors are on, even if freecooling is active, the outlet limit alarm is bypassed and the antifreeze alarm is used.

- Antifreeze alarm set point from EVD

A14: With the EVD connected in the tLAN, A14 represents the evaporation temperature (sent by the EVD) below which the antifreeze alarm is activated; when the alarm is active, the compressors in the circuit affected are switched off, while the pump remains on to reduce the possibility of freezing. Manual reset (or automatic, depending on parameter P05), only occurs when the water temperature returns within the operating limits (that it, exceeds A14+A02

• Probe readings: parameters (B*)

- Select probe to be shown on display.

b00: Sets the probe reading to be displayed.

0= probe B1

1= probe B2

2= probe B3

3= probe B4

4= probe B5 5= probe B6

5= probe B6 6= probe B7

7= probe B8

8= set point without compensation

9= dynamic set point with possible compensation

10= remote ON/OFF digital input status

11= probe μAD

For the list of parameter-probe associations see Table 4.d **Note**: probes that are not present cannot be selected.

• Compressor settings: parameters (c*)

- Minimum ON time

col: This establishes the time that the compressor must remain ON for when started, even if the stop signal is sent.

Key:

- 1. signal;
- 2. compressor;
- 3. min. ON time-interval.

- Minimum OFF time

c02: This establishes the time that the compressor must remain OFF for when stopped, even if the start signal is sent. The compressor LED flashes in this phase.

Key:

- 1. signal;
- compressor;
- 3. min. OFF time-interval.

- Delay between 2 starts of the compressor

c03: This sets the minimum time that must elapse between two successive starts of the same compressor (determines the maximum number of starts per hour for the compressor). The compressor LED flashes in this phase. If by mistake the user enters a value lower than the sum of C01 + C02, this parameter will be ignored and only the times C01 and C02 will be considered.

Key:

- 1. signal;
- 2. compressor;
- 3. min. time-interval between two ON routins.

- Start delay between compressors

c04: This sets the delay between the starts of the two compressors, so as to reduce the peak power input and make the compressors start more smoothly. The compressor LED flashes in this phase.

- In the event of capacity control, the delay c04 between compressor and valve becomes c04/2;
- In the event of defrost operation, the delay between compressor and compressor is 3 seconds, and between compressor and valve is 2 seconds.

Key:

- 1. 1st signal;
- 2. 2nd signal;
- 3. 1st compressore;
- 4. 2nd compressor;
- 5. time delay between two compressors ON routines/time-delay of the capacity-controlled routine.

- Stop delay between compressors

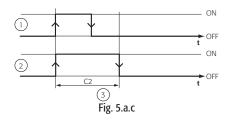
c05: This sets the stop delay between the compressors.

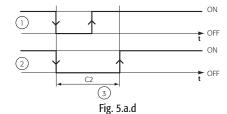
Key:

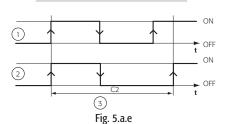
- 1. 2nd signal;
- 1st signal;
- 3. 2nd compressor;
- 4. 1st compressore;
- 5. time delay between two compressors OFF routines/time-delay before the capacity-controlled routine.

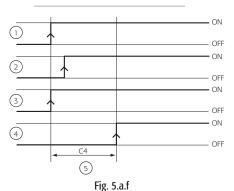
- Delay on power-up (reset power supply)

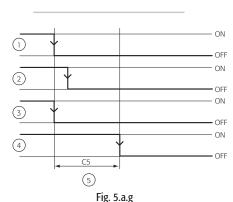
c06: At power ON (when the controller is physically switched ON) the activation of all the outputs is delayed so as to distribute the power input and protect the compressor against repeated starts in the event of frequent power failures. This means that after the delay time, the controller will start to manage the outputs based on the other times and the other normal functions.


- Compressor start delay from pump/outlet fan (air/air) ON.


c07: In cooling and heating operation, if the operation of the pump (outlet fan) is subject to the controller (parameter H05=2), the compressor is started when required after the set time from the activation of the water pump (or outlet fan in air/air units).


If the pump/outlet fan is always ON (H05=1) and consequently does not depend on the control logic, the compressor is started after the set time from when the unit starts.


Key:


- 1. inlet fan;
- pump;
- compressor;
- 4. time-delay between pump-inlet fan and compressor.

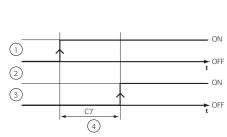


Fig. 5.a.h

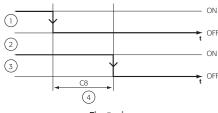


Fig. 5.a.i

- Pump/outlet fan (air/air) start delay from compressor OFF

c08: In cooling and heating operation, if the operation of the pump (outlet fan) is subject to the controller (parameter H05=2), when the compressor is requested to stop, the control first stops the compressor and the pump (outlet fan).

If the pump/outlet fan is always ON (H05=1), it is only stopped in standby mode.

Key:

- compressor;
- 2. pump;
- 3. inlet fan;
- 4. time-delay between pump-inlet fan and compressor.

- Maximum tandem compressor operating time

c09: In the case of two compressors in tandem per circuit, one compressor should not operate for longer than the time set for c09 while the other compressor in the circuit is OFF. This prevents the oil shared in common from migrating over the allowed limit towards the active compressor, and consequently avoids damage when inactive compressor next starts (FIFO logic) due to poor lubrication. As a result, compressor 1 (or 2) in circuit 1, if requested to operate continuously, will actually stop OFF after the time c09 and hand over to compressor 2 (or 1) that was previously OFF.

This function always considers the compressor times. Any value lower than the time set for c03 will be ignored, and the compressors (if the above condition is satisfied) will switch over after the time c03. When C9=0, the function is disabled (the compressors will not switch over).

- Hour counter compressor 1-2-3-4

c10, c11, c12, c13: These indicate the number of operating hours of compressor 1, 2, 3, 4, expressed in hundreds of hours.

Pressing ▲ and ▼ together, when the hour counter is displayed, resets the hour counter and, consequently, cancels any maintenance requests in progress.

c10= operating hours comp. 1

c11= operating hours comp. 2

c12= operating hours comp. 3

c13= operating hours comp. 4

- Compressor operating hour counter threshold

c14: This sets the number of compressors operating hours, expressed in hundreds of hours, above which the maintenance request signal is sent.

c14= 0: function disabled.

- Evaporator pump/fan 1 hour counter

c15: This indicates the number of operating hours for the evaporator pump or fan 1, expressed in hundreds of hours.

Pressing ▲ and ▼ together, when the hour counter is displayed, resets the hour counter and, consequently, cancels any maintenance requests in progress.

- Condenser or backup pump/fan 2 hour counter

c16: This indicates the number of operating hours for the condenser pump (or backup) or fan 2, expressed in hundreds of hours.

Pressing ▲ and ▼ together, when the hour counter is displayed, resets the hour counter and, consequently, cancels any maintenance requests in progress.

- Minimum OFF time before the next pump/fan start

c17: The diagram below shows an example of the operation of the pump and with burst (active when H05=3, see parameter H05).

The dashed areas on the compressor line indicate the pump-compressor and compressor-pump delay times

Burst mode is disabled in standby and during an alarm when the pump is OFF.

At power ON the delay c17 must elapse before burst can start.

- Minimum pump/fan ON time

c18: This represents the minimum time that the pump remains ON for, see Fig. 5.i (active with H05=3 see parameter H05).

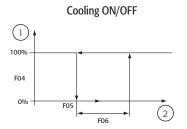
• Fan settings: parameters (F*)

- Fan output

F01: Enables the operation of the fans.

F01=0: fans absent; F01=1: fans present.

The PWM output (1 or 2, depending on the value of parameter H02) requires the presence of the optional fan control cards (ON/OFF for the CONVONOFF module or speed variation for MCHRTF or FCS three-phase).

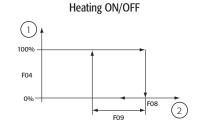
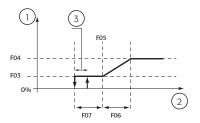

- Fan operating mode

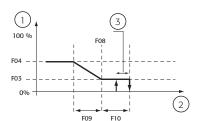
F02: This establishes the operating logic for the fans:

F02=0: always ON at maximum speed, independently from the compressors. The fans are only switched OFF when the unit is in standby.

F02=1: ON at maximum speed when at least one compressor in the corresponding circuit is ON (parallel operation in each circuit).

F02=2: ON when the corresponding compressor is ON, with ON/OFF control based on the temperature/ pressure settings for the minimum and maximum speed (parameters F05-F06-F08 and F09). When the compressors are stopped, the corresponding fans are also stopped, irrespective of the condensing temperature/pressure.


Fig. 5.a.l

Key:

- speed %;
- 2. condensing temperature/pressure;
- 3. hysteresis.

Cooling with speed control

Heating with speed control

Fig. 5.a.m

F02=3: ON when the corresponding compressor is ON, with speed control. When the compressors are stopped the corresponding fans are also stopped, irrespective of the condensing temperature/pressure.

With F02=3 and an NTC condenser probe, when the compressor starts the fans are started at maximum speed for the time F11, irrespective of the temperature measured.

In the event of a condenser probe fault, the fans will be switched OFF.

- Minimum voltage threshold for Triac

F03: In the event of fan speed control, the optional phase cutting cards (MCHRTF*) are required, fitted with a triac. The voltage delivered by the triac to the electric fan motor corresponding to the minimum speed must be set. The set value does not correspond to the actual voltage in Volts applied, but rather to an internal unit of calculation in the μ C2SE.

If using FCS controllers, set this parameter to 0.

F03 = Represents the minimum threshold for the triac

- Maximum voltage threshold for Triac

F04: In the event of fan speed control, the optional phase cutting cards (MCHRTF*) are required, fitted with a triac. The voltage delivered by the triac to the electric fan motor corresponding to the maximum speed must be set. The set value does not correspond to the actual voltage in Volts applied, but rather to an internal unit of calculation in the μ C2SE.

If using FCS controllers, set this parameter to 100.

F04 = Represents the maximum threshold for the triac

- Temperature/pressure set point for minimum speed in cooling

F05: This represents the temperature or pressure below which the fans remain ON at minimum speed. In the case of ON/OFF control, it represents the temperature or pressure below which the fans are switched OFF (Fig. 5.a.k).

- Temperature/pressure differential for maximum speed in cooling

F06: This represents the temperature or pressure differential in reference to F05 above which the fans are started at maximum speed; in the case of ON/OFF control, this represents the differential above which the fans are started (Fig. 5.a.k).

- Temperature/pressure differential for fans Off in cooling

F07: This represents the temperature or pressure differential in reference to F05 below which the fans are stopped. The fans are started 1 °C "lower" when using NTC temperature probes, or 0. 5 bars if using pressure probes. (Fig. 5.a.l)

If NTC temperature probes or pressure probes are used to control the condensing temperature/pressure, there is an activation hysteresis of 1 °C or 0.5 bar respectively.

- Fan start time

F11: This establishes the operating time at maximum speed when the fans are started, so as to overcome the mechanical inertia of the motor.

The same times are observed in reference to the start of the compressor (irrespective of the condensing temperature/pressure), if NTC temperature probes are used on the condenser and speed control is enabled, F02=3; this is done to bring forward the sudden increase in pressure (which does not necessarily correspond to a likewise rapid increase in temperature in the area where the probe is located) and consequently to improve control

F11=0: the function is disabled, that is, the fans are activated at the minimum speed and then controlled based on the condensing temperature/pressure.

- Triac impulse duration

F12: This represents the duration in milliseconds for the impulse applied to the triac. For induction motors, set the parameter to 2 (default). On the other hand, when using the CONVONOFFO, CONVO/10AO modules or FCS controllers, set the parameter to 0.

- Fan on time when starting in high condensing temp.

F14: establishes the time the fans are operated at maximum speed if starting with a high condensing temperature.

F14 = 0: function disabled.

F14 > 0: fan on time (in seconds).

The function is operational only in chiller mode, if the probe on the condenser is a temperature sensor and only for air-cooled units. When the first compressor in the circuit in question starts, it is assumed that the temperature of the environment is close to the temperature of the condenser; if the value read by the condenser probe is higher than the value of F05-F07, as well as starting the compressor, the fans in the circuit in question are forced on at maximum speed for the time set by F14.

- Activate low noise

F15: This function moves the condensing pressure set point so as to lower the fan speed and consequently reduce noise (specifically at night). If low noise is active in cooling, the condenser control set points are increased by F16. If low noise is active in heating, the set points are reduced by F17.

F15= 0: Low noise deactivated.

F15= 1: Low noise activated in cooling.

F15= 2: Low noise activated in heating.

F15= 3: Low noise activated in cooling and heating.

N.B. The variation in the set point is not active during defrost

- Cooling set point differential

F16: Differential added to the condenser control set point when low noise is active (valid for both temperature and pressure control).

• Unit settings: parameters: (H*)

- Unit model

H01: Used to select the type of unit being controlled:

H01= 2: AIR/WATER Chiller

H01= 4:WATER/WATER Chiller

(*) Note: Set H21= 4 (Condenser pump always on), if H02= 1 (Two condensers).

- Number of condenser fan circuits/water condensers

H02: This establishes the number of fan circuits present in the configurations with two circuits. With one fan circuit (H02=0) the unit may have 1 or 2 refrigerant circuits:

- with one refrigerant circuit, the fans are exclusively controlled based on the pressure or temperature read by the sensor in the first circuit;
- with two refrigerant circuits, the fans are controlled based on the higher temperature/pressure of the two circuits. In heat pump mode, the output depends on the lower temperature or pressure. The output used is Y1. Vice-versa, with 2 ventilation circuits (H02=1) each PWM output is independent and depends on its own condenser probe (B3 or B4 for circuit 1 and B7 or B8 for circuit 2).

- Number of evaporators

H03: This establishes the number of evaporators present when there are 2 or 4 compressors, obviously with 2 circuits (including the expansion). With one evaporator (H03=0), the management of the heaters and the antifreeze function is performed only on B2. Vice-versa, with 2 evaporators (H03=1) antifreeze control will be performed using B2 and B6, while input B5 is used to control the water outlet temperature.

- Number of compressors/circuits

H04: This establishes the number of compressors per circuit and the number of circuits. For further details see Table 4.g.

- Evaporator pump/fan operating mode

H05: This establishes the operating mode for the evaporator water pump or the outlet fan (in air/air units)

H05 = 0: pump disabled, (the flow switch alarm is ignored)

H05 = 1: always ON (the alarm is managed)

H05 = 2: ON when called by compressor (the alarm is managed)

H05 = 3: the pump will be started and stopped at regular intervals (independently from the compressors) as per the Burst setting (see parameters c17 and c18).

H05= 4: follow hot keep or hot start in heating, always on in cooling

H05= 5: follow hot keep or hot start in heating, follow the compressors in cooling.

When the heating or cooling signal is received, first the evaporator pump/outlet fan starts (always ON), and then the compressor, after the set times (c07, c08). The pump will not be stopped until all the compressors are Off.

- Cooling/heating digital input

H06: Establishes whether the cooling/heating selection from digital input is enabled. see parameters P08, P09, P10, P11, P12 and P13). The open status places the unit in cooling operation, vice-versa, in heating. D-IN Open = Cooling

D-IN Closed = Heating

- ON/OFF digital input

H07: Establishes whether the ON/OFF selection from digital input is enabled or disabled. If the selection is enabled (H07= 1), the "open" status switches the unit Off, while in the "closed" status, the unit may be OFF or ON, as controlled by the keypad.

This parameter is not valid for condensing units.

- μC²SE network configuration

H08: Establishes the layout of the tLan network.

 $0 = \mu C^2 SE$ only

 $1 = \mu C^2 SE + valve$

 $2 = \mu C^2 SE + exp.$

 $3 = \mu C^2 SE + exp. + valve$

 $4 = \mu C^2 SE + I/O$

 $5 = \mu C^2 SE + valve + I/O$

 $6 = \mu C^2 SE + exp. + I/O$

 $7 = \mu C^2 SE + I/O + valve + valve$

- Enable keypad

H09: Used to disable the modification of the DIRECT and USER parameters from the keypad. The value of the parameters can always be displayed. The enable/disable cooling, heating and reset counter functions are also available.

Values:

0: keypad disabled

1: keypad enabled (default)

- Serial address

H10: Establishes the address of the instrument for the serial connection, via an optional board, to a PC for supervision and/or telemaintenance.

- Selection map outputs

H11: This parameter is used to arbitrarily associate some digital outputs to the devices on the unit.

H11= 0: standard (default); for units with one compressor per circuit (H04=0, 2).

H11= 1: For cooling only units with two compressors (H01=0, 2, 4, 7, 9 and H04=1, 3, 5)

H11= 2: The outputs of the expansion follow the same logic for the 2nd circuit. For H01= 1, 3, 5, 6, 8, 10 and H04= 1, 3, 5

H11=3: The outputs of the expansion follow the same logic for the 2nd circuit. For H01=1, 3, 5, 6, 8, 10 and H04=1, 3, 5

H11= 4: For H01= 1, 3, 5, 6, 8, 10 and H04= 0, 1

H11= 5: For cooling only units with two compressors (H01= 0, 2, 4, 7, 9, and H04= 0)

H11= 6: 1 compressor per circuit, heat pump

H11= 7: 1 compressor per circuit, cooling only, solution 1

H11=8: 1 compressor per circuit, cooling only, solution 2

H11= 9: 2 compressors per circuit, heat pump

H11= 10: 2 compressors per circuit, cooling only, solution 1

H11= 11: 2 compressors per circuit, cooling only, solution 2

H11= 12:

associated device

outputs	H11=0	H11= 1	H11= 2	H11=3	H11= 4	H11= 5
C1	compressor 1					
C2	heater 1	heater 1	heater 1	reversing valve 1	reversing valve 1	heater 1
C3	Pump/evaporator (fan) (on	Pump/evaporator (fan) (on	Pump/evaporator (fan) (on	Pump/evaporator (fan) (on	evaporator pump	Pump/evaporator (fan) (on
	air/air units)	air/air units)	air/air units)	air/air units)		air/air units)
C4	reversing valve 1	Compressor 2 (or capacity	condenser fan 1			
		control comp. 1)	control comp. 1)	control comp. 1)	control comp. 1)	
C5	alarm	alarm	reversing valve 1	alarm	alarm	alarm
C6	compressor 2	compressor 3	compressor 3	compressor 3	not used	compressor 2
C7	heater 2	heater 2	heater 2	reversing valve 2	heater 1	heater 2
C8	Condenser pump/backup					
C9	reversing valve 2	Compressor 4 (or capacity	Compressor 4 (or capacity	Compressor 4 (or capacity	not used	condenser fan 2
		control comp. 2)	control comp. 2)	control comp. 2)		
C10	Warning	Warning	reversing valve 2	Warning	Warning	Warning

				associated device			
outputs	H11=6	H11= 7	H11=8	H11= 9	H11= 10	H11= 11	H11= 12
C1	compressor 1	compressor 1	compressor 1	compressor 1	compressor 1	compressor 1	compressor 1
C2	1 step heater	1 step heater	1 step heater	compressor 2	compressor 2	compressor 2	P25
C3	outlet fan	outlet fan	outlet fan	outlet fan	outlet fan	outlet fan	P26
C4	reversing valve 1	2 step heater	condenser fan 1	reversing valve 1	heating step 1	heating step 1	P27
C5	alarm	alarm	alarm	alarm	alarm	alarm	P28
C6	compressor 3	compressor 3	compressor 3	compressor 3	compressor 3	compressor 3	compressore 3
C7	2 step heater	P29	2 step heater		compressor 4		P29
C8	open freecooling/	open freecooling	open freecooling	open freecooling/	open freecooling/	open freecooling/	P30
	freeheating			freeheating	freeheating	freeheating	
C9	reversing valve 2	humidifier (ON/OFF)	condenser fan 2	1 step heater	heating step 2	humidifier	P31
C10	close freecooling/	close freecooling	close freecooling	close freecooling/	close freecooling/	close freecooling/	P32
	freeheating			freeheating	freeheating	freeheating	

Parameters P25 to P28 can have the following meanings:

0 = no function associated with the relay

1 = compressor 2

2 = Heater 1

3 = Reversing valve 1 4 = Pump/inside fan

5 = Open freecooling/freeheating

6 = Close freecooling/freeheating

7 = Humidifier

8 = Condenser fan 1 on/off

9 = Heater 2

10 = Alarm

10 = Boiler contact

Parameters P29 to P32 can have the following meanings:

0 = no function associated with the relay

1 = compressor 4

2 = Heater 2

3 =Reversing valve 2

4 = Pump/inside fan 2nd evaporator 5 = Open freecooling/freeheating

6 = Close freecooling/freeheating

7 = Humidifier

8 = Condenser fan 2 on/off

9 = Warning

10 = Condenser pump/Backup

11 = Heater 1

- Capacity-control logic

H12: Specifies the logic for the activation of the capacity-control steps for the compressors and the 4-way reversing valve.

H12 = 0: 4-way reversing valve and capacity-control normally energised

H12 = 1: 4-way reversing valve and capacity-control normally de-energised. Default value.

H12 = 2: 4-way reversing valve normally de-energised and capacity-control normally energised

H12 = 3: 4-way reversing valve normally energised and capacity-control normally de-energised.

Note: in the event of capacity-control, the rotation between compressor and corresponding valve is disabled. FIFO or time logic can be used between the 2 circuits to optimise the starts or the operating hours of the 2 compressors (1 per circuit).

- Enable pump down

H13: This function allows the unit to be stopped while avoiding the possible formation of liquid refrigerant inside the evaporator.

When the only active compressor is called to stop, the expansion valve is closed so as to depressurise the circuit.

Valid only when the driver is installed, as the driver pressure probe is used.

- Minimum pumpdown pressure

H14: Limit pressure below which the compressor is deactivated.

- Maximum pumpdown time

H15: Maximum time after which the compressor is deactivated.

- Function of the second pump

H21: This parameter defines how the output dedicated to the second pump must be managed.

H21= 0: the second pump is disabled.

H21=1: the second pump is used only as a backup.

If the flow switch and corresponding alarm are activated, the pumps are switched over:

- if the alarm passes, a warning is shown on the display and the warning relay is activated, while the unit continues to operate with the Backup pump. When the next alarm is activated the pumps will be switched over.
- if the alarm remains active even with the second pump on for longer than the time set for P1, the generic alarm is generated and the unit is switched OFF.

H21= 2: the second pump represents a backup pump. The two pumps are never used at the same time but each 24 hours, are switched over. In the event of flow alarms, the logic is the same as for setting 1. After being switched over due to the flow alarm, the 24-hour timer is set to zero.

H21= 3: the second pump is used as an ON/OFF device in the same way as the condenser fan (which in this case is not present), in ON/OFF mode, with the same settings (in fact in this case the pump replaces the fan, including the symbol).

H21= 4: the second pump is used for the condenser but is always ON. In this case the pump symbol is not managed.

Note: In the event of flow alarms with automatic reset, 10 attempts are made to restart the pump every 90 seconds, for a maximum time of PO2; after the 10 attempts, the alarm becomes manual reset. With the second pump, the attempt consists in switching over the pump that is on, with the same logic.

- Disable load default values

H22: If this parameter is set to 1, it disables the possibility of restoring the default parameters using the PRG button at power ON.

- select supervisor protocol

H23: establishes the protocol used for the connection to the supervisor from the serial board RS485

H23 = 0: CAREL protocol (baud rate 19200,...)

H23 = 1: Modbus protocol

- High/Low temperature alarm mode

H24: determines when HT/LT alarm appears, whether the compressor stops

H24 = 0: compressor doesn't stop

H24 = 1: compressor stops when HT alarm appears

H24 = 2: compressor stops when LT alarm appears

H24 = 3: compressor stops when HT or LT alarm appear

- Enable hot gas bypass function

H25: determines whether the hot gas bypass function is enabled

H25 = 0: disable

H25 = 1: enable

- Enable special standby function

H26: determines whether the special stanby function is enabled

H25 = 0: disable

H25 = 1 enable

When this function is enable, if during STAND BY mode the temperature B1 drops below r3 the unit switches on the heating mode (electrical heater or hot gas bypass).

Part load in low pressure

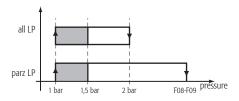


Fig. 5.b.b

note 1: if P08 is set to 10, the change in state considers the times d12 and d13, and respects the compressor protection times, both from the digital input and the keypad.

note 2: if the digital input is used to switch the unit ON/OFF or change the operating mode, these functions are disabled on the keypad.

note 3: ID5 for the condensing unit with reverse cycle has the function of cooling/heating changeover

• Alarm settings: parameters (P*)

- Flow switch alarm delay when starting pump

P01: Establishes a delay in the recognition of the flow switch alarm when starting the pump (this allows the flow-rate to stabilise). In the event of alarms, the compressors are stopped immediately, ignoring the times.

- Flow switch alarm delay in steady operation

P02: Establishes a delay in the recognition of the flow switch alarm in steady operation, so as to filter any variations in flow-rate or air bubbles present in the water circuit. In the event of alarms, the compressors are stopped immediately, ignoring the times.

- Low pressure alarm delay at compressor start

P03: Establishes a delay in the recognition of the low pressure alarm when the compressor starts, so as to allow stable operating conditions to be reached. This delay is also counted when reversing the 4-way valve in the refrigerant circuit.

- Part load in high pressure and low pressure in heat pump

P04: enable or disable the part load operation of the circuit in high pressure.

The function is valid if the unit is fitted with tandem or capacity controlled compressors and pressure transducers. In the event of high pressure alarms, that is, for values over P18 (hysteresis 0.5 bar), the controller deactivates a load step in the circuit in question and waits 10 seconds. After this interval, if the alarm is still active, the unit is stopped, otherwise it continues to operate in part load mode. In this situation, the display shows the message PH1 and/or PH2, depending on the circuit. This condition remains active until the pressure falls below the value corresponding to the maximum speed of the condenser fans (F05+F06). Below this value, the unit reactivates the load step that had previously been deactivated.

P04=0: capacity control not activated

P04=1: capacity control activated for high pressure

P04=2: capacity control activated for low pressure

P04=3: capacity control activated for high and low pressure

With the unit operating in heat pump mode, due to low outside temperatures or the load the pressure may fall and stop the unit due to the low pressure alarm. If the circuit has 2 compressor steps and the pressure remains below the value of one bar for the time P22, the circuit can operate at part load. This capacity control is not activated when the alarm comes from the digital input. In the event of low pressure, the controller deactivates one step and if the pressure does not return above the threshold in 10 seconds, the alarm is activated and the circuit is stopped. This function is valid for all units with pressure transducers.

- Alarm reset

P05: Enables automatic reset for all those alarms that normally feature manual reset (high pressure, low pressure, flow switch/antifreeze) as per the following table:

P05= 0: (default) high pressure, low pressure and antifreeze (low temperature) with manual reset;

P05= 1: all the alarms with automatic reset;

P05= 2: high pressure and antifreeze (low temperature) manual, low pressure automatic;

P05= 3: high pressure manual, low pressure and antifreeze (low temperature) automatic;

P05= 4: high and low pressure manual, antifreeze (low temperature) automatic;

P05= 5: high and low pressure manual after the third activation in one hour*, antifreeze (low temperature) automatic:

P05= 6: high and low pressure manual after the third activation in one hour*, antifreeze (low temperature) manual.

- Low pressure alarm with pressure probes

P07: P07=0: this function is disabled.

P07=1: if in heat pump mode the evaporator (external exchanger) pressure is less than 1 bar (and if the presence of the condenser pressure probe is enabled), the low pressure alarm is activated (while still considering the delay P03).

Note: P07=1 the LP digital inputs in heat pump are ignored.

- Select digital input ID1

P08= 0: none;

P08= 1: flow switch with manual reset (normally closed);

P08= 2: flow switch with automatic reset (N.C.);

P08= 3: general thermal overload with manual reset (N.C.);

P08= 4: general thermal overload with automatic reset (N.C.);

P08= 5: thermal overload circuit 1 with manual reset (N.C.);

P08= 6: thermal overload circuit 1 with automatic reset (N.C.);

P08= 7: thermal overload circuit 2 with manual reset (N.C.);

P08= 8: thermal overload circuit 2 with automatic reset (N.C.);

P08= 9: cooling/heating (open = Cooling, closed = Heating) if H06= 1;

P08= 10: cooling/heating with delays d12 and d13 (open = Cooling, closed = Heating) if H06= 1;

P08= 11: alarm signal with manual reset (N.C.);

P08= 12: alarm signal with automatic reset (N.C.);

P08= 13: second set point from external contact (cooling and heating), (normally open);

P08= 14: second cooling set point from external contact and heating from time band (N.O.);

P08= 15: end defrost from external contact circuit 1 (N.C.);

P08= 16: end defrost from external contact circuit 2 (N.C.);

P08= 17: end defrost from external contact circuit 1 (N.C.);

P08= 18: end defrost from external contact circuit 2 (N.C.);

P08= 19: condenser step 1 (N.O.);

P08= 20: condenser step 2 (N.O.);

P08= 21: condenser step 3 (N.O.); P08= 22: condenser step 4 (N.O.);

P08= 23: remote ON/OFF.

^{*:} the high and low pressure alarms are managed in the same way both for the transducers and the pressure switches (digital input); if the unit is in standby the count (3 times in one hour) is reset.

- Select digital inputs ID2, ID6, ID7, ID10, ID5

P09, P10, P11, P12, P34: Configuration of digital inputs ID2, ID6, ID7, ID10, and ID5 respectively (as per the table above for digital input ID1).

Note: Cooling/heating (9, 10) cannot be set on P10, P11, P12, and P14.

- Select input B4 if /04 = 1

P13: If input B4 is used as ON/OFF (/04 = 1) the same options are valid as for P08.

- Select input B8 if /08 = 1

P14: If input B8 is used as ON/OFF (/08 = 1) the same options are valid as for P08.

- Select low pressure alarm

P15: Used to select whether the low pressure alarm is detected when the compressor is OFF (P15=1) or alternatively only when the compressor is ON (P15=0, default).

When the compressor starts the alarm is in any case ignored for the time P03.

- High temperature/high system start-up temperature alarm delay

P16: Represents the high temperature alarm threshold detected by probe B1; the differential is set at 2 °C and the alarm is reset automatically (the alarm relay is activated, signal only, and the message "Ht" is shown). When starting the system, this alarm is ignored for the time P17. If the system start-up protection is enabled (see parameter P20) and the alarm is activated, the time P17 is ignored and the alarm has no

- High temperature alarm delay on power-up

P17: High temperature alarm delay when the control is switched on (power ON), from the remote ON/ OFF contact or from the keypad.

- High pressure alarm from transducer set point

P18: Sets the value beyond which the high pressure alarm is generated. Each circuit will be managed by its own transducer.

P18= 0: the function is disabled.

For all other values greater than 3.0, due to the hysteresis (3 bars), the alarm is managed according to the

- Low temperature alarm set point

P19: Represents a threshold for the low temperature (measured by probe B1) alarm, the differential is set at 2 °C and it is reset automatically (the alarm relay is activated and the disply shows the message "Lt")

- System start-up protection for high/low temperature

P20: If set to 1, this parameter enables the system protection function when starting, both at power ON and when switching ON from Standby.

For values of B1 greater than the set point P19, an alarm is activated and the unit is not started (display "AHt").

The alarm is reset automatically.

P20=0: the function is not enabled.

- Low pressure alarm waiting time in heat pump

P22: Delay in generating the low pressure alarm in heat pump mode

If the pressure remains below 1 bar for the time p22 and the circuit has 2 compressor steps, the circuit can operate at part load (see P04). This preventive capacity control function remains active until the pressure rises above F08-F09.

- Low pressure alarm waiting time during defrost

P23: Delay in generating the low pressure alarm in heat pump mode during defrost

- Deactivate compressors in capacity control for HP and LP

P24: Decide which compressor must be stopped in each circuit during capacity control

P24= 0 stops compressors 1 and 3

P24= 1 stops compressors 2 and 4

- Low pressure alarm set point from transducer

P33: : Sets the value beyond which the low pressure alarm is generated when the unit is operating in heat pump mode. Each circuit will be managed according to its own transducer.

P33= 0 the function is disabled.

- Mute alarm relay using "PRg/mute" button

P35=0 the PRG/mute button does not alter the status of the relay, if the alarm is active and in progress. P35=1 the PRG/mute button alters the status of the relay even if the alarm is active and in progress, as if it were a buzzer or a siren.

- High pressure alarm management

P36: the parameter is used to consider the high pressure alarm even when the compressor is off or consider it only when the compressor is on, depending on whether the pressure switch is directly connected to the digital input on the controller or via another circuit.

P36=0: high pressure alarm always considered (pressure switch connected directly to the digital input).

P36=1: high pressure alarm considered 2 seconds after starting the compressor.

- Definition of DI11 to DI15

P37: selection of digital input 11 (input 1 I/O board) P38: selection of digital input 12 (input 1 I/O board) P39: selection of digital input 13 (input 1 I/O board) P40: selection of digital input 14 (input 1 I/O board) P41: selection of digital input 15 (input 1 I/O board)

Each parameter can be:

0= not connected

1= alarm Ad1

2= alarm Ad2

3= alarm Ad3

4= alarm Ad4

5= alarm Ad5

6= warning Ad1

7= warning Ad2

8= warning Ad3

9= warning Ad4

10= warning Ad5

Note: all alarms stop the unit. THe alarm relay will be activated. All warning activate the warning relay.

- Definition of DO11 to DO15

P42: selection of digital output 11 (output 1 I/O board)

P43: selection of digital output 12 (output 1 I/O board)

P44: selection of digital output 13 (output 1 I/O board)

P45: selection of digital output 14 (output 1 I/O board)

P46: selection of digital output 15 (output 1 I/O board)

Each parameter can be:

0= not connected

1 = Ad1

2 = Ad2

3 = Ad3

4= Ad4

5 = Ad5

6= HP1

7= HP2 8= LP1

9= LP2

10= TC1

11=TC2

12= FL

13= LT

14= HT 15= ALT

16= AHT

17= TP

18= FLB

• Control settings: parameters (r*)

- Cooling set point

r01: between r13 and r14

r02: cooling differential value of DTE when the unit is first started (autotuning enabled)

- Compressor rotation

r05: The rotation of the compressors allows the operating hours to be balanced either statistically, using FIFO logic, or absolutely, by counting the effective operating hours. Settings:

r05=0: rotation disabled: The customer can use compressors with different power ratings according to the desired logic or manage the capacity-control functions. The compressors are started/stopped in proportional mode.

r05=1: rotation with FIFO logic (first ON, first OFF, and vice-versa first OFF, first ON); in this mode the operating hours are optimised together with the number of starts, even if the compressor safety times are always respected.

r05=2: rotation with control of operating hours; in this way the compressors will have the same operating hours, as the compressor with the least operating hours is always started first, again observing the safety times. This does not however consider FIFO logic and does not optimise the starts and stops. In the case of capacity controlled compressors (1 per circuit), FIFO logic or timed operation will refer to the actual circuit and not the compressor valves. If, for example, when capacity is required from circuit 1, compressor 1 starts first, capacity controlled (not at full capacity), and then the valve is managed as a second step, so that the compressor will work at maximum efficiency. If less capacity is required, the second step will be deactivated first, and then the compressor. There is no rotation between the compressor and the valve. If extra capacity is required, the second circuit will start with compressor 2 and then, if required, the valve is operated.

When stopping, the valve is managed first and then the actual compressor as a whole. Both FIFO logic and timed operation will involve either one circuit or the other. The activation and deactivation of the valves are not subject to timers, but rather only a hysteresis that is equal to the set point and the differential of the step (in fact the valve performs the same function as a hermetic compressor). r05=3: direct correspondence between the digital inputs and the compressor relays (condensing units only).

- Type of compressor control

r06: This parameter is used to set the logic for maintaining the set point:

r06= 0: proportional on inlet

r06= 1: proportional on inlet + dead zone (see Dead zone, below)

r06= 2: proportional on outlet

r06= 3: proportional on outlet with dead zone

r06= 4: on outlet by time with dead zone (see timed outlet temperature control)

The dead zone essentially shifts the proportional band from the set point by the value set for the parameter r07. This parameter is valid in all configurations if enabled (for r07≠0: dead zone set and enabled).

Key Figure 5.b.c:

r06: enable the dead zone (enabled if r06=1 or 3)

r07: dead zone

r01: cooling set point

r02: cooling differential

In chiller (cooling) mode, the dead zone moves the cooling proportional band above the set point by the value r07.

Outlet temperature control by time r06 = 4

This type of control is based on the need to maintain the outlet temperature as constant as possible, despite the load being variable or the reduced inertia of the system.

The logic has the aim of keeping the temperature inside the dead zone.

If outside the zone, the compressors will be activated with the logic described below, so as to return inside the dead zone, neither too quickly (using an integral or derivative), nor too slowly, with fixed time logic. There are two logical times involved: the activation time and deactivation time.

- Dead zone differential

r07: (see dead zone)

- Activation delay at lower limit of r07 (if r06 = 4)

r08: The value set is used in the control algorithm (see timed outlet temperature control) as the maximum time (at the start of the differential) for the activation of the compressors.

- Activation delay at upper limit of r07 (if r06 = 4)

r09: The value set is used in the control algorithm (see timed outlet temperature control) as the minimum time (at the end of the differential) for the activation of the compressors.

Activation time (cooling)

The activation time is not a set parameter, but rather the combination of two set parameters, that is, r08 and r09. When the temperature leaves the dead zone, the activation time is equal to r08, while at the end of the differential r02 the activation time is equal to r09.

Inside the differential r02, the activation time varies linearly between r08 and r09.

This means that as the temperature moves away from the set point, the times are reduced and the esponse of the process becomes more dynamic.

- Deactivation delay at upper limit of r12 (if r06 = 4)

r10: The value set is used in the control algorithm (see timed outlet temperature control) as the maximum time (at the set point) for the deactivation of the compressors.

- Deactivation delay at lower limit of r12 (if r06 = 4)

r11: The value set for this parameter is used in the control algorithm (see timed outlet temperature control) as the minimum time (at the end of the deactivation differential) for the deactivation of the compressors.

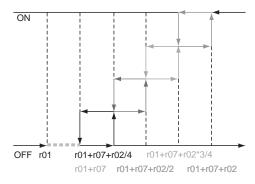


Fig. 5.b.c

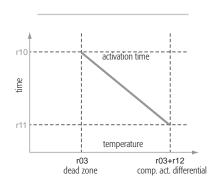
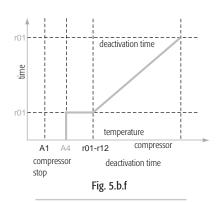
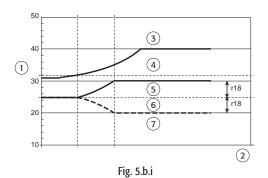




Fig. 5.b.e

Example of compressor deactivation due to outside temperature

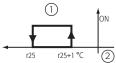


Fig. 5.b.l

- Compressor deactivation differential (if r06 = 4)

r12: This represents the temperature differential for the deactivation of the compressors, according to the procedure described in "Deactivation time".

Deactivation time (cooling) Fig. 5.b.f

In the same way as for the activation time, the deactivation time also varies between a maximum value, set for the parameter r10 and corresponding to the set point temperature, and a minimum, set for the parameter r11 corresponding to the end of the differential for the deactivation of the compressors, set by the parameter r12.

Below this value, the deactivation time will be equal to the minimum set until reaching the temperature A04, after which all the compressors will be switched OFF, irrespective of the times. As the temperature moves away from the set point, the response of the process becomes more dynamic.

- Minimum Cooling set point

r13: Establishes the minimum limit for setting the Cooling set point.

- Maximum Cooling set point

r14: Establishes the maximum limit for setting the Cooling set point.

- Cooling compensation constant (chiller mode):

r17: Sets the coefficient that controls the cooling compensation algorithm. In cooling mode, if r17 is positive, the set point increases as the outside temperature increases (measured by the outside probe); if on the other hand r17 is negative the set point decreases as the outside temperature increases. This difference in the set point from the set value can have a maximum absolute value equal to the setting of r18. The values for the parameters shown on the graph are: r17=±2, r01=25, r19=32 and r18=5).

Key:

. temperature;

- 2. time:
- 3. external temperature (probe B3/B4);
- 4. comp. start temperature (r19);
- 5. positive compensation (r17= 2);
- 6. set point (r1);
- 7. negative compensation (r17=-2).

- Maximum deviation from the set point

r18: Indicates the maximum deviation from the set point beyond which compensation is stopped (maximum and minimum limits in reference to the set point).

- Start compensation temperature in cooling (outside probe)

r19: Sets the temperature (measured by the outside probe) above which the compensation function starts (cooling), value between -40T80 °C.

- Start compensation temperature in heating (outside probe)

r20: Sets the temperature (measured by the outside probe) below which the compensation function starts (heating), the value must be between -40T80 °C.

- Second cooling set point from external contact

r21: Represents the alternative to r01 if an associated digital input is closed (see parameter P08), between r13 and r14.

- Outside temperature set point to stop compressors

r25: To avoid energy efficiency lower than electrical heating, the compressors are stopped if the outside temperature falls below r25, the differential to start them again is set to 1 degree. The heaters can then be activated according to the corresponding set point.

Setting 25 to "-40" (default value) disabled the function.

- Buffer tank suppression (low load)

r27: The low load condition is determined when only one compressor is started and then is stopped after operating for less than the time set for parameter r28.

The settings are:

r27=0: the function is disabled;

r27=1: enabled only in chiller mode;

r27=2: enabled only in heat pump mode;

r27=3: enabled in chiller and heat pump modes.

- Minimum compressor on time to determine low load condition

r28: This parameter represents the minimum compressor on time below which the low load condition is determined. Whenever the compressor stops, the controller analyses the load status.

If already in low load condition, the time considered by the controller for the analysis becomes "r28 x r29: r02" in chiller mode, or "r28 x r30 : r04" in heat pump mode.

This parameter also has the meaning of damper travel time when freecooling/heating is enabled. When the sum of the opening times reaches 2*damper travel time, the damper is no longer moved. The sum is reset when the damper is closing. Operation is the same in closing.

- Differential during the low load condition in chiller mode

r29: This parameter represents the new differential considered by the controller in chiller mode during the low load condition.

Specifically, r02 is replaced by r29.

This also has the meaning of freecooling differential.

- Differential during the low load condition in heat pump mode

r30: This parameter represents the new differential considered by the controller in heat pump mode during the low load condition.

Specifically, r04 is replaced by r30.

This also has the meaning of freeheating differential.

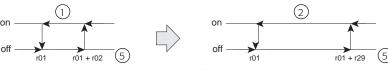


Fig. 5.b.m

- Electric heater set point relationship

r43: defines the relationship between the absolute set point, considered as the activation threshold for the electric heaters, and the relative set point, that is, the activation threshold for the electric heaters referred to a working set point (set point sent by µAD, r01 or r04 or from time band) depending on the various applications and the mode, cooling or heating, and more precisely:

r43= 0 A4, A8, A11, P16, P19 absolute values

r43= 1 A4, P16, P19 absolute values; A8, A11 relative values

r43= 2 A8, A11, P16, P19 absolute values; A4 relative value

r43= 3 P16, P19 absolute values; A4, A8, A11 relative values

r43= 4 A4, A8, A11 absolute values; P16, P19 relative values

r43= 5 A4 absolute value; A8, A11, P16, P19 relative values

r43=6 A8, A11 absolute values; A4, P16, P19 relative values

r43=7 A4, A8, A11, P16, P19 relative values

- Maximum value of calculated set point in relative regulation

r45: for the relative set point function, there is a maximum limit. When the control works in relative mode, the set point calculated is lmited by r45.

- Minimum value of calculated set point in relative regulation

r46: for the relative set point function, there is a minimum limit. When the control works in relative mode, the set point calculated is lmited by r46.

• Firmware parameters: (F-r*)

These parameters cannot be set (display only:

H95: software version of I/O board;

H96-H97: software version of Driver 1, 2;

H98: software version of the expansion;

H99: software version of the μ C²SE controller.

Functions available with the clock board

The alarm log is only active and operative if the clock board is fitted. The terminal shows whether the clock board is fitted by displaying the following parameters:

- RTC hours

t01: RTC hours

- RTC minutes

t02: RTC minutes

- RTC day

t03: RTC day

- RTC month

t04: RTC month

- RTC year

t05: RTC year

The alarms are only shown on the local display.

The controller saves the significant events that stop (alarms) or limit (warnings) the operation of the unit. Up to 25 events can be saved, highlighting:

- Event code;
- Start hours:
- Start minutes;
- Start day;
- Start month;
- End hours; End minutes;
- End day;
- End month.

Key:

- chiller;
- chiller in low load;
- temperature.

SV	Display	Туре
All. Circ. 1	HP1	High pressure circuit 1
All Circ. 2	HP2	High pressure circuit 2
All. Circ. 1	LP1	Low pressure circuit 1
All Circ. 2	LP2	Low pressure circuit 2
All. Gen.	TP	General thermal overload
All. Circ. 1	tC1	Thermal overload circuit 1
All. cir. 2	tC2	Thermal overload circuit 2
All. Gen	FL	Flow switch alarm
All. Sonde	E1	Probe B1 alarm
All. Sonde	E2	Probe B2 alarm
All. Sonde	E3*	Probe B3 alarm

The log is accessed by pressing PRG+SEL for 5s and entering the password 44. The alarms saved are complete, as they include both the start and end of the event. The alarms can be deleted individually by pressing UP and DOWN for 5s when the desired event is displayed. If there are no alarms saved, "noH" is displayed. The table shows the possible alarms that can be saved:

SV	Display	Туре
All. Sonde	E4*	Probe B4 alarm
All. Sonde	E5	Probe B5 alarm
All. Sonde	E6	Probe B6 alarm
All. Sonde	E7*	Probe B7 alarm7
All. Sonde	E8*	Probe B8 alarm
All. Gen.	ESP	Expansion error
All. Circ. 1	A1	Frost alarm circ. 1
All. Circ. 2	A2	Frost alarm circ. 2
All. Gen.	EHS	High power supply voltage
All. Evd 1	Ed1	EVD1 tLAN error
All. Evd 2	Ed2	EVD2 tLAN error

SV	Display	Туре
OFF	SH1	EVD1 overheat alarm
All. Evd 2	SH2	EVD2 overheat alarm
All. Evd 1	EP1	EEPROM error EVD 1
All. Evd 2	EP2	EEPROM error EVD 2
All. Evd 1	ES1	Probe error EVD 1
All. Evd 2	ES2	Probe error EVD 2
All. Evd 1	EU1	Valve open error EVD 1 start
All. Evd 2	EU2	Valve open error EVD 2 start
All. Evd 1	Eb1	EVD 1 battery alarm
All. Evd 2	Eb2	EVD 2 battery alarm
All. Sonda μAD	Et	uAD terminal probe alarm

- Start hours for 2nd set point in cooling

t06 (192): Hour when the second cooling set point starts(r21).

- Start minutes for 2nd set point in cooling

t07 (193): Minutes when the second cooling set point starts (r21).

- End hours for 2nd set point in cooling

t08 (194): Hour when the second cooling set point stops (r21).

- End minutes for 2nd set point in cooling

t09 (195): Minutes when the second cooling set point stops (r21).

If a digital input is configured as the second set point from external contact (e.g. p08 = 13) the time bands are ignored. If a digital input is configured as the second cooling set point from external contact and heating set point from time band (e.g. p08 = 14), the cooling time bands are ignored. The second set point from external contact input has priority over the second cooling set point from external contact and heating set point from time band.

- Start hours for low noise in cooling

t14: Start hours for low noise in cooling

- Start minutes for low noise in cooling

t15: Start minutes for low noise in cooling

- End hours for low noise in cooling

t16: End hours for low noise in cooling

- End minutes for low noise in cooling

t17: End minutes for low noise in cooling

6. TABLE OF ALARMS

Key to the table of alarms:

*: if the probe is set for the compensation function, in the event of probe faults, the unit continues to operate.

ON*: if the expansion card is not present.

EVD 1= EVD400 connected to μC^2SE (1st circ.)

EVD 2= EVD400 connected to the expansion (2nd circ.)

alarm display	alarm type	resetting	Compressor	pump	fan	heater	Valve	alarm	warning	superv. variable	superv. variab. description	variab. type
Ю	Communication error with I/O board	Automatic	OFF	OFF	OFF	OFF	OFF	OFF	-	-	Signal on display	Digital
HP1	High pressure	Depends on P05	OFF C1-2	-	ON(60")	-	-	ON	-	41 (R)	Circuit 1 alarm	Digital
HP2	High pressure	Depends on P05	OFF C3-4	-	ON(60")	-	-	ON	-	42 (R)	Circuit 2 alarm	Digital
LP1	Low pressure	Depends on P05	OFF C1-2	1-	OFF 1	1.	-	ON	-	41 (R)	Circuit 1 alarm	Digital
LP2		Depends on P05	OFF C3-4	1_	OFF 2			ON		42 (R)	Circuit 2 alarm	
	Low pressure					-	-	-	-			Digital
TP	General overload	Depends on P08	OFF	OFF	OFF	-	-	ON	-	45 (R)	General warning	Digital
tC1	Circuit 1 overload	Depends on P08	OFF C1-2	-	OFF 1	-	-	ON	-	41 (R)	Circuit 1 alarm	Digital
tC2	Circuit 2 overload	Depends on P08	OFF C3-4	-	OFF 2	-	-	ON	-	42 (R)	Circuit 2 alarm	Digital
LA	advice	Depends on P08	-	-	-	-	-	ON*	ON	50 (R)	General advice	Digital
FL	Flow controller alarm	Depends on P08	OFF	OFF	OFF	-	-	ON	-	45 (R)	General alarm	Digital
FLb	Backup pump warning	Automatic	-	-	-	-	-	-	ON	50 (R)	General advice	Digital
E1	Probe B1 alarm	Automatic	OFF	OFF	OFF	OFF		ON	OIV	46 (R)	Probe alarm	Digital
							-	-	-			
E2	Probe B2 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	-	46 (R)	Probe alarm	Digital
E3*	Probe B3 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	-	46 (R)	Probe alarm	Digital
E4*	Probe B4 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	-	46 (R)	Probe alarm	Digital
E5	Probe B5 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	-	46 (R)	Probe alarm	Digital
E6	Probe B6 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	1-	46 (R)	Probe alarm	Digital
E7*	Probe B7 alarm		OFF	OFF	OFF	OFF		ON		46 (R)	Probe alarm	
		Automatic					-	-	-			Digital
E8*	Probe B8 alarm	Automatic	OFF	OFF	OFF	OFF	-	ON	-	46 (R)	Probe alarm	Digital
Hc1-4	Hour warning C1-4	Automatic	-		-		-	-	ON	47 (R)	Compressor advice	Digital
EPr	EEPROM error during operation	Automatic	-	-	-	-	-	-	ON	50 (R)	General advice	Digital
EPb	EEPROM error at the start-up	Automatic	OFF	OFF	OFF	OFF	OFF	OFF	OFF	45 (R)	General alarm	Digital
								_				
ESP	Expansion Error	Automatic	OFF	OFF	OFF	OFF	OFF	ON	-	45 (R)	General alarm	Digital
EL1-2	Zero cross	Automatic	-	-	100%	-	-	ON*	ON	52 (R)	Fan advice	Digital
dF1-2	Defrosting error	Automatic	-	-	-	-	-	-	ON	50 (R)	General warning	Digital
d1-2	Defrost on circuit in	-	-	-	-	-	-	-	-	-	Signal on display	-
	question											
A1	Frost alarm circ. 1	Depends on P05	OFF C1-2	-	OFF 1	-	-	ON	-	41 (R)	Circuit 1 alarm	Digital
A2	Frost alarm circ. 2	Depends on P05	OFF C3-4	-	OFF 2	-	-	ON	-	42 (R)	Circuit 2 alarm	Digital
Ht	High temperature	Automatic	-	-	-	-	-	ON*	ON	51 (R)	Temperature advice	Digital
Lt	Low ambient temp.	Depends on P05						ON*	ON	51 (R)	Temperature advice	Digital
			000	ļ-	055	OFF	-	ON				
AHt	High temperature at the start-up	Automatic	OFF	-	OFF	OFF	-	-	ON	50 (R)	General warning	Digital
ALt	Low temperature at the start-up	Automatic	OFF	-	OFF	OFF	-	-	ON	50 (R)	General warning	Digital
ELS	Low supply voltage	Automatic	-	-	-	-	-	-	ON	50 (R)	General warning	Digital
EHS	High supply voltage	Automatic	OFF	OFF	OFF	OFF	OFF	OFF	OFF	45 (R)	General alarm	Digital
Ed1	EVD 1 tLAN error	Automatic	OFF C1-2	-	OFF	_	_	ON		43 (R)	EVD 1 warning	Digital
Ed2	EVD 2 tLAN error	Automatic	OFF C3-4		OFF			ON		44 (R)	EVD 2 warning	Digital
		Automatic		ļ-		-	-					
SH1	EVD 1 superheat alarm	-	OFF C1-2	-	OFF-	-	-	ON	-	43 (R)	EVD 1 warning	Digital
SH2	EVD 2 superheat alarm	-	OFF C3-4	-	OFF-	-	-	ON	-	44 (R)	EVD 2 warning	Digital
nO1	MOP 1 warning	Automatic	-	-	-	-	-	-	ON	48 (R)	EVD 1 advice	Digital
nO2	MOP 2 warning	Automatic	-	-	-	-	-	-	ON	49 (R)	EVD 2 advice	Digital
LO1	LOP 1 warning	Automatic	_	1.	-	1.	-		ON	48 (R)	EVD 1 advice	Digital
		Automatic		1	1	1			ON			
LO2	LOP 1 warning		-	1-	-	1-	-	1-		49 (R)	EVD 2 advice	Digital
HA1	High inlet temperature warning circ.1	Automatic	-	-	-	-	-	-	ON	48 (R)	EVD 1 advice	Digital
HA2	High inlet temperature warning circ. 2	Automatic	-	-	-	-	-	-	ON	49 (R)	EVD 2 advice	Digital
EP1	EVD 1 Eeprom error	Automatic	OFF C1-2	-	OFF-	-	-	ON	-	43 (R)	EVD 1 warning	Digital
EP2	EVD 2 Eeprom error	Automatic	OFF C3-4	1_	OFF-	-	-	ON	1_	44 (R)	EVD 1 warning	Digital
				+		+	-		+			
ES1	EVD 1 probe error	Automatic	OFF C1-2	-	OFF-	-	-	ON	-	43 (R)	EVD 1 warning	Digital
ES2	EVD 2 probe error	Automatic	OFF C3-4	-	OFF-	-	-	ON	-	44 (R)	EVD 2 warning	Digital
EU1	Open valve EVD 1 error at the start-up	Automatic	OFF C1-2	-	OFF	-	-	ON	-	43 (R)	EVD 1 warning	Digital
EU2	Open valve EVD 2 error at the start-up	Automatic	OFF C3-4	-	OFF	-	-	ON	-	44 (R)	EVD 2 warning	Digital
Eb1	EVD 1 battery alarm	Automatic	OFF C1-2	-	OFF	-	-	ON	-	43 (R)	EVD 1 warning	Digital
Eb2	EVD 2 battery alarm	Automatic	OFF C3-4	1-	OFF	-	-	ON	1-	44 (R)	EVD 2 warning	Digital
L	Low load warning	Automatic		1_	-	1_	1_	-	1_	- (1)	Signal on display	- DIGITUI
Ed1	tLan EVD 1 communication error	Automatic	OFF C1-2	-	OFF	-	-	ON	-	43 (R)	EVD 1 warning	Digital
Ed2	tLan EVD 2 communication	Automatic	OFF C3-4	-	OFF	-	-	ON	-	44 (R)	EVD 2 warning	Digital
DIII	error Low pressure circ. 1 warning	<u> </u>		-	1_	_	-	<u> </u>		_	Signal on display	1_
	LOW PIESSUIE CITC. I WAITING		-	+-	-	-	-	1-	-	-	Signal on display Signal on display	-
PH1	Low processes size 2						1 -	1 -	1 -		- ZIDDALOD ORDIAV	1
PH2	Low pressure circ. 2 warning	-	-	-	-	-	_		-			
	Low pressure circ. 2 warning low outlet temperature warning	-	-	-	-	-	-	-	-	-	Signal on display	

Note: The warning relay differs from the alarm relay as it is only activated for warnings, that is, signals only, which have no direct effect on the operation of the unit, and the display does not show the alarm symbol (bell). N.B. The alarm relating to the circuit with the fault must not interact with the operation of the other circuit, as long as the condenser is not shared in common.

IO: communication error with I/O board

If the control loses communication with I/O board, all of the system will be inhibited to prevent the unit being damaged. The alarm relay will be activated and the message will be visible on the display with fixed red LED.

HP1: High pressure circuit 1

The alarm is detected irrespective of the status of the pump and the compressors. The compressors corresponding to circuit 1 are immediately stopped (ignoring the set protection times), the buzzer and alarm relay are activated, and the display starts flashing.

The fans corresponding to the condenser in circuit 1 are activated at maximum speed for 60 s, so as to oppose the alarm situation, after which they are switched OFF. This alarm may also be generated when the high pressure limit is exceeded (valid only when the pressure transducer is fitted) set by the parameter P18, which to be enabled must be greater than 3.0 bars, due to the corresponding hysteresis.

HP2: High pressure circuit 2

As for HP1 but relating to circuit 2.

LP1: Low pressure circuit 1

The alarm depends on P15, P7 and P3.

P15= 0, P07= 0: the alarm is detected only if the compressors in circuit 1 are ON, and after the time P03 from when the compressors started, otherwise it is immediate.

P15= 1, P07= 0: the alarm is detected even if the compressors in circuit 1 are off, after the time P03. P15= 0, P07= 1: the alarm is detected only if the compressors in circuit 1 are ON, and after the time P03 from when the compressors started, otherwise it is immediate, and if in heat pump mode, is activated for pressure values less than 1 bar.

P15= 1, P07= 1: the alarm is detected also if the compressors in circuit 1 are Off, after the time P03, and if in heat pump mode, is activated for pressure values lower then 1 bar. The hysteresis for this alarm is 1 bar.

LP2: Low pressure circuit 2

As for LP1 but relating to circuit 2.

PH1: Compressor part load circuit 1

Indicates the part load of circuit 1 due to high pressure. This situation is signalled by the message "PH1" on the display the activation of the warning relay.

PH2: Compressor part load circuit 2

As for PC1, but for circuit 2.

tP: General thermal overload

The alarm is detected irrespective of the status of the pump and the compressors. The compressors, the pumps and fans stop (without observing the protection times) or are inhibited from starting, the alarm relay is activated, the display flashes the corresponding message, and the LED flashes. It can be reset either manually or automatically (see par. P08, P09, P10, P11, P12, P13).

tC1: Thermal overload circuit 1

As for tP but relating to circuit 1

tC2: Thermal overload circuit 2

As for tC1 but relating to circuit 2.

LA: generic warning

This represents a generic warning that appears on the display, from digital input, without modifying the operation of the unit. With the 1st circuit module only, the alarm relay is activated, while with the expansion card the warning relay can be used.

FL: flow alarm

This alarm is detected only if the pump is ON (excluding the delays when starting P01 and in steady operation P02), irrespective of the status of the compressor. All of the outputs are disabled: pump, compressor (without observing the OFF times), condenser fan, and the buzzer sounds, the alarm relay is activated and the display flashes.

The presence of the utility water pump must be enabled (H5≠0). It can be reset either manually or automatically (see P08, P09, P10, P11, P12, P13).

FLb: Backup pump warning

The warning activates the warning relay and displays the message "FLb"; reset is manual. This indicates the operation of the backup pump (if present) due to a probable fault on the main pump, suggesting that maintenance is required. If the flow alarm features automatic reset, the controller will make 10 attempts to re-start the pumps, after which the FL alarm will replace FLb. If the flow alarm features manual reset, when first activated the controller will display the alarm FLb, switching over the pumps; when activated again the FL alarm will replace FLb.

E1 to E8: probe error detected even when the unit is in Standby

The presence of a probe alarm causes the deactivation of the compressor, the condenser fans, the pump (outlet fan in AIR/AIR units) and the heaters (so as to avoid fires in the air/air units); the buzzer and alarm relay are activated, and the display starts flashing.

If the probe has a compensation function, the unit will continue a operate correctly, with the exception of the corresponding function, and the warning relay will be activated and a message shown on the display, from E1 to E8 for probes from B1 to B8.

Hc1 to Hc4: compressor operating hour limit exceeded warning

When the number of operating hours for the compressor exceeds the maintenance threshold (as default equal to zero, and consequently the function is disabled), the maintenance request signal is activated. The buzzer and the alarm relay are not activated, however the warning relay is activated (with the expansion card fitted).

Epr, EPb: EEPROM error

A problem has occurred when saving the parameters to the unit's non-volatile memory (EEPROM); in the event of an Epr error, the μ C²SE continues to perform the control functions with the data present in the volatile memory (RAM), where there is a physical copy of all of the data. After the first power failure the configuration will be lost.

The buzzer and the alarm relay are not activated. If the occurs when starting the unit, "EPb", the controller will not operate.

ESP: communication error with expansion card

If the controller loses communication with the expansion card, the entire system will be stopped to avoid adversely affecting the unit. The alarm relay is activated and the display will show the message, with the red LED on steady.

EL1-2: warning, zero crossing error circuit 1-2

If the controller detects errors in the power supply, control may be lost over the fan speed. In this case, the display will show a warning, and the fans will be controlled at maximum speed. The alarm is reset automatically, so as to not affect the operation of the unit. If the expansion card is used, the warning relay is activate)

dF1-2: warning, end defrost circuit 1-2 due to maximum time

If the defrost ends after the maximum time when end defrost by temperature or from external contact has been selected, the unit displays the text dF1 for circuit 1 or dF2 for circuit 2. The message is cancelled using the delete alarm procedure or when the next correct defrost cycle is completed. The buzzer and the alarm relay are not activated. If the expansion card is used, the warning relay is activated (if used).

A1: antifreeze alarm outlet limit circuit 1

The alarm is only detected in water chillers (H01= 2, 3, 4, 5 or 6) by the evaporator water outlet probe (B2/B6) or, if the electronic expansion driver (EVD) is connected to the tLAN, based on the evaporation temperature sent by the driver. The evaporator water outlet temperature is compared against the threshold A01, while the evaporation temperature is compared against the threshold A14. The compressors in circuit 1 and the condenser fans in circuit 1 are immediately stopped, the buzzer and alarm relay are activated, and the display starts flashing. If the µC²SE is in Standby, the alarm condition is not detected, and only the heaters are managed. Reset depends on parameter P5:

- 1. in the event of automatic reset, the unit restarts automatically if the temperature is above the value A01+A02 or A14+A02.
- 2. in the event of manual reset, the unit can restart manually even if the alarm is active. After the time A03, if the alarm persists the unit will stop again.

For air/air units the parameter becomes the antifreeze-outlet limit alarm set point. If the outlet limit is active, the freecooling damper is forced closed and the message SUL is shown on the display.

A2: antifreeze alarm circuit 2

As for A1 but relating to circuit 2

Ht: high temperature warning

This alarm is activated when the threshold is exceeded (read by B1), set for the parameter P16. It is delayed at power ON by the parameter P17 and causes the activation of the alarm relay and the buzzer, without deactivating the outputs. It is reset automatically when conditions that caused the alarm are no longer present.

Lt: low temperature warning

For direct expansion units (H01=0, 1) the alarm is used to measure a low room temperature using probe B1 or B2 (depending on par. A06).

The alarm may be reset manually or automatically, and depends on the parameter P05. If the expansion is present, the corresponding relay is activated; in the event of μ C²SE module only, the alarm relay will be used.

AHt: high temperature warning when starting the system

The advice does not activate the relay, and displays the message "AHt".

ALt: low temperature warning when starting the system

The advice does not activate the relay, and displays the message "ALt".

ELS/EHS: warning, low/high power supply alarm

If the power supply voltage is too low or too high, the corresponding message is displayed. In these cases, the correct operation of the μ C²SE is no longer guaranteed. In the low voltage conditions only the requests to deactivate the loads are effected. Any start-up requests remain pending. The high voltage condition involves the deactivation of all the energised relays.

L: Low load warning

The warning does not activate the relay and displays the message "L"; reset is automatic.

D1: defrost signal circuit 1

When the defrost is on circuit 1, the display shows the message D1.

D2: defrost signal circuit 2

When the defrost is on circuit 2, the display shows the message D2.

Drive

All the driver alarms on the μ C²SE that stop the unit feature automatic reset. Consequently, the possibility to select the automatic resetting of the entire system must be selected for the drivers by setting the corresponding parameters. The μ C²SE can send the Go Ahead command according to the normal procedure for resetting the alarms from the keypad.

Ed1: tLan communication error with Driver 1

The alarm is generated after a fixed time (5 s) from when the μ C²SE loses contact with Driver 1. In this case, circuit 1 is disabled for safety reasons.

Ed2: tLan communication error with Driver 2 (expansion card)

As for Ed1, but relating to driver 2.

SH1: low superheat alarm circuit 1

The low superheat alarm for circuit 1, after a fixed time (5 s), inhibits the circuit 1 for safety reasons. The risk is that the compressors will flood.

SH2: low superheat alarm circuit 2

As for SH1, but relating to driver 2

nO1: MOP warning (maximum operating pressure) circuit 1

The warning appears on the display and, if the expansion card is fitted, the corresponding relay is activated.

nO2: MOP warning (maximum operating pressure) circuit 2

The warning appears on the display and, if the expansion card is fitted, the corresponding relay is activated.

LO1: LOP warning (lowest operating pressure) circuit

The warning appears on the display and, if the expansion card is fitted, the corresponding relay is activated.

LO2: LOP warning (lowest operating pressure) circuit 2

As for LO1, but relating to driver 2

HA1: high evaporator temperature warning circuit 1

The warning appears on the display and, if the expansion card is fitted, the corresponding relay is activated.

HA2: high evaporator temperature warning circuit 2

As for HA1, but relating to driver 2.

EP1: EEPROM error driver 1

The circuit 1 is disabled for safety reasons, as the status of Driver 1 is not known.

EP2: EEPROM error driver 2

As for EP1, but relating to driver 2.

ES1: probe error driver 1

The circuit 1 is disabled for safety reasons, as the status of Driver 1 is not known.

ES2: probe error driver 2

As for ES1, but relating to driver 2.

EU1: EVD 1 error, valve open when starting

If when starting the system the Driver detects that the valve is still open, an alarm is sent to the μ C²SE that stops the compressors and the fans in the corresponding circuit.

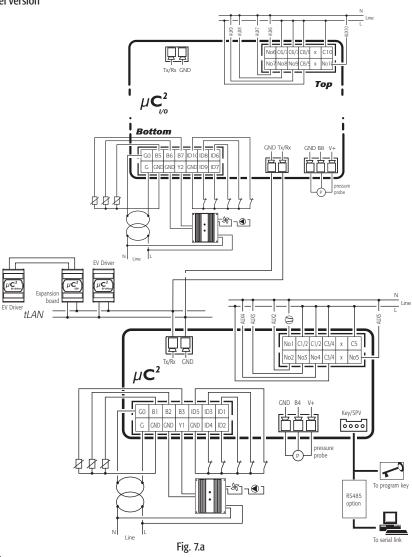
EU2: EVD 2 error, valve open when starting

As for EU1, but relating to EVD 2.

Eb1: EVD 1 battery alarm

The EVD 1 battery alarm stops the compressors from starting so as to prevent the risk of liquid returning to circuit 1, and disables the corresponding fans.

Eb2: EVD 2 battery alarm


The EVD 2 battery alarm stops the compressors from starting so as to avoid the risk of liquid returning to circuit 2, and disables the corresponding fans.

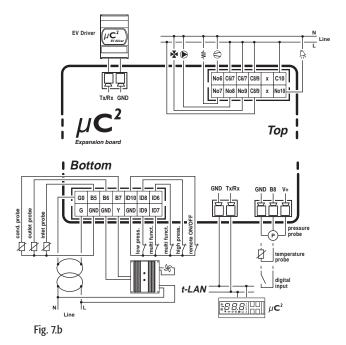
CONNECTIONS, ACCESSORIES AND OPTIONS

7.1 Connection diagram

Below is the connection diagram for the $\mu C^2 SE. \label{eq:connection}$ Panel version

I/O layout

μC²SÉ	Description	
B1	Programmable I/O	
B2	Programmable I/O	
B3	Programmable I/O	
B4 (universal)	Programmable I/O	
ID1*	Programmable I/O (*= Any of the options for P08 can be selected (see Table 5.11))	
ID2*	Programmable I/O (*= Any of the options for P08 can be selected (see Table 5.11))	
ID3	Programmable I/O	
ID4	Programmable I/O	
ID5	Programmable I/O	
Y1	Programmable I/O	
C1/2-NO1	Programmable I/O	
C1/2-NO2	Programmable I/O	
C3/4-NO3	Programmable I/O	
C3/4-NO4	Programmable I/O	
C5-NO5	Programmable I/O	
		Table 7.a


Expansion	Description
B5	Programmable I/O
B6	Programmable I/O
B7	Programmable I/O
B8 (universal)	Programmable I/O
ID6**	Programmable I/O (**= Any of the options for P08 can be selected, except for E/I and E/I delay.)
ID7**	Programmable I/O (**= Any of the options for P08 can be selected, except for E/I and E/I delay.)
ID8	Programmable I/O
ID9	Programmable I/O
ID10	
Y2	Programmable I/O
C6/7-NO6	Programmable I/O
C6/7-NO7	Programmable I/O
C8/9-NO8	Programmable I/O
C8/9-NO9	Programmable I/O
C10-NO10	Programmable I/O

7.2 Expansion card

This device allows the μ C²SE to manage the second refrigerant circuit on chillers, heat pumps and condensing units with up to 4 hermetic compressors.

The following figure shows the connection diagram for the μ C²SE expansion card, code MCH200002*.

NOTE: The expansion features two LEDs on the main board (to see these, remove the top or bottom door), which display its status by the following messages:

	ON	Flashing
green LED	Board powered	Board powered and serial communication with µC2SE in progress
red LED	·	1 flash: Probe fault alarm
		2 flashes: Zero crossing alarm (mains frequency not detected)
		3 flashes: Serial communication alarm with EVD
		4 flashes: Serial communication alarm with uC2SE

Table 7.c

The alarms are displayed in sequence and are separated from each other by pauses.

7.3 EVD4*: Electronic expansion valve driver

This device is used to control electronic expansion valves. The device is connected to the μ C²SE via a tLAN serial line. The condensing pressure probe must be connected to the μ C²SE, which then sends the reading to the driver.

Nota: for all other information on the connections, refer to the EVD4* driver manual.

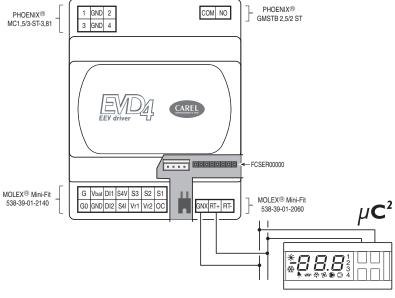


Fig. 7.c

7.4 Fan speed control board (code MCHRTF*)

The phase cutting boards (code MCHRTF****) are used to control the speed of the condenser fans.

IMPORTANT: The power supply to the uC2SE (G and G0) and the MCHRTF**** board must be in phase. If, for example, the power supply to the μ C²SE system is three-phase, make sure that the primary of the transformer supplying the $\mu\text{C}^2\text{SE}$ board is connected to the same phase that is connected to terminals N and L on the speed control board; therefore, do not use 380 Vac/24 Vac transformers to supply the controller if the phase and neutral are used to directly power the speed control boards.

Connect the earth terminal (where envisaged) to the earth in the electrical panel.

Key:

- 1. to μchiller;
- 2. earth:
- 3. to motor.
- al motore.

7.5 Fan ON/OFF control board (code CONVONOFFO)

The relay boards (code CONVONOFF0) are used for the ON/OFF management of the condenser fans. The control relay has a switchable power rating of 10 A at 250 Vac in AC1 (1/3 HP inductive).

7.6 PWM to 0 to 10Vdc (or 4 to 20 mA)conversion board for fans (code CONVO/10A0)

The CONV0/10A0 boards convert the PWM signal at terminal Y on the μ C²SE to a standard 0 to 10 Vdc (or 4 to 20 mA) signal. The FCS series three-phase controllers can be connected to the μ C²SE without using this module.

7.7 Minimum and maximum fan speed calculation

This procedure should only be performed when the fan speed control boards are sued (code MCHRTF*). it must be stressed that if the ON/OFF modules (code CONVONOFF0) or alternatively the PWM to 0 to 10 V converters (code CONVO/10A0) are used, parameter F03 should be set to zero, and parameter F04 to the maximum value.

Given the different types of motors existing on the market, the user must be able to set the voltages supplied by the electronic board corresponding to the minimum and maximum speeds. In this regard (and if the default values are not suitable), proceed as follows:

- set parameter F02= 3 and set F03 and F04 to zero;
- the condenser control set point (evaporator in HP mode) has been modified to take the output signal to the maximum value (PWM);
- increase F04 until the fan operates at a sufficient speed (make sure that, after having stopped it, it can rotate freely when released);
- "copy" this value to parameter F03; this sets the voltage for the minimum speed;
- connect a voltmeter (set for AC, 250V) between the two "L" terminals (the two external contacts);
- increase F04 until the voltage stabilises at around 2 Vac (inductive motors) or 1.6, 1.7 Vac (capacitive motors). Once the value has been found, it will be evident that even when increasing F04 the voltage no longer decreases. In any case do not increase F04 further so as to avoid damaging the motor;
- restore the correct condenser set point (evaporator in HP mode).

The operation is now completed.

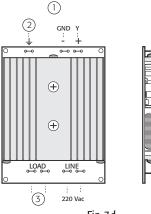


Fig. 7.d

Fig. 7.e

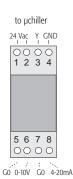


Fig. 7.f

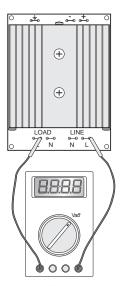


Fig. 7.g

Fig. 7.h

Fig. 7.i

Fig. 7.j.a

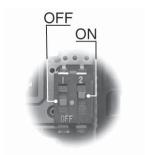


Fig. 7.j.b

7.8 Programming key (code PSOPZKEYA0)

The programming keys PSOPZKEY00 and PSOPZKEYA0 for CAREL controllers are used for copying the complete set parameters for μ C²SE.

The keys must be connected to the connector (4 pin AMP) fitted on the controllers, and can work with the instruments ON or OFF, as indicated in the operating instructions for the specific controller. The two main functions (upload/download) that can be selected through two dip-switches (which are placed under the battery cover). They are:

- Loading to the key the parameters of a controller (UPLOAD);
- Copying from the key to one or more controllers (DOWNLOAD).

Warning: the copying of the parameters is allowed only between instruments with the same code. Data loading operation to the key is always allowed. To make identification of the key easier CAREL has inserted a label on which you can describe the loaded programming or the machine to which you are referring

IMPORTANT NOTE: the key can be used only with controllers μ C²SE that have the same Firmware version

UPLOAD - copying the parameters from an instrument to the key:

- open the rear hatch of the key and place the two dip-switches in the OFF position (see Fig. 7.j.a). Close the hatch;
- connect the key to the connector of the instrument;
- press the button on the key and keep it pressed, checking the LED signal sequence: at first it is red, after a few seconds it becomes green;
- if the sequence of signals is as indicated above, the copying operation has been completed correctly (green LED ON), the button can be released and the key disconnected from the instrument; in case of different signals: if the green LED doesn't turn on or if there are some flashes, there's a problem. Refer to the corresponding table for the meaning of the signals.

DOWNLOAD - copying the parameters from the key to the instrument:

- open the rear hatch of the key and place the dip-switch n. 1 in the OFF position and the dip-switch n. 2 in the ON position (see Fig. 7j.b). Close the hatch;
- · connect the key to the connector of the instrument;
- press the button on the key and keep it pressed, checking the LED signal sequence: at first it is red, after a few seconds it becomes green;
- if the sequence of signals is as indicated above, the copying operation has been completed correctly (green LED ON), the button can be released; after a few seconds the LED turns off and the key can be disconnected from the instrument;
- in case of different signals: if the green LED doesn't turn on or if there are some flashes there's a problem. Refer to the corresponding table for the meaning of the signals.

The operation takes maximum 10 seconds to complete. If after this period the completed operation signal hasn't yet appeared, i.e. the green LED ON, try releasing and pressing the button again. In the event of flashes, refer to the corresponding table for the meaning of the signals.

LED signal	error	meaning and solution
red LED flashing	Flat batteries at the	The batteries are flat, the copying cannot be carried out.
	beginning of the	Replace the battery (only on PSOPZKEY00).
	copying	
green LED	Flat batteries at the end	The copying operation has been carried out correctly but at the end
flashing	of the copying (only on	of the operation the voltage of the batteries is low.
	PSOPZKEY00)	It is advisable to replace the batteries.
Alternate red/	Not compatible	The setup of the parameters cannot be copied since the model of
green LED	instrument	the connected parameters is not compatible. Such error happens
flashing		only with the DOWNLOAD function, check the controller code and
(orange signal)		make the copy only on compatible codes.
red and green	Copying error	Error in the copied data. Repeat the operation; if the problem
LEDs ON		persists, check the batteries and the connections of the key.
red LED always	Data transmission error	The copying operation hasn't been completed because of serious
ON		data transmission or copying errors. Repeat the operation, if the
		problem persists, check the batteries and the connections of the key.
LEDs OFF	Batteries disconnected	Check the batteries (for the PSOPZKEY00)
	Power supply not	Check the power supply (for the PSOPZKEYA0)
	connected	

Table 7.d

Technical specifications

iccinnear specinearions	
Power supply to the	- Use three 1.5 V 190 mA batteries (Duracell D357H or equivalent)
PSOPZKEY00	- Maximum current supplied 50 mA max.
Power supply to the	- switching power supply:
PSOPZKEYA0	Input 100 to 240 V~; (-10%, +10%); 50/60 Hz; 90 mA. Output: 5 Vdc; 650 mA
Operating conditions	0T50°C r.H. <90% non-condensing
Storage conditions	-20T70°C r.H. <90% non-condensing
Case	Plastic, dimensions 42x105x18 mm including prod and connector Figs. 1 and 2

Table 7.e

(Here we have dealt only with the base functions of the instrument. For the remaining specific functions, see the manual of the instrument that is being used).

7.9 RS485 serial options

RS485 serial option for μC²SE panel version (code MCH2004850)

The MCH2004850 serial option is used to connect the μ C²SE controller to a supervisor network via a standard RS485 serial line.

This option uses the input normally associated with the programming key, which has the dual function of key connector/serial communication port.

Fig. 7.k

7.10 Terminals

The μ C²SE features the following user interfaces:

Remote terminal

The remote terminal allows the complete configuration of the μ C2SE from a remote position. The buttons and indications on the display faithfully reproduce the μ C2SE user interface. In addition, PlantVisor can be connected to the remote terminal using the special accessory.

Product code:

MCH200TP00 for panel installation MCH200TW00 for built-in assembly

For further information see the instruction sheet +050001065.

μAD

 μ AD is the μ C2SE room terminal.

This terminal, fitted with built-in temperature and humidity probes, controls the temperature-humidity conditions in the environment where its is installed, interacting with the units controlled by the μ C2SE. The μ AD can be used to set time bands, the temperature and humidity set point, switch the system on/off and change operating mode simply and intuitively.

Product code:

ADMA001000: with NTC probe

ADMB001010: with NTC probe, RTC and buzzer

ADMG001010: with NTC and humidity probe, RTC and buzzer

ADMH001010: with NTC and humidity probe, RTC, buzzer and backlighting

For further information see the instruction sheet +05000750 and the manual +030220465.

μΑΜ

 μ AM is the μ Area controller compatible with the μ C2SE.

This can control up to 10 fan coils (fitted with the e-droFAN electronic controller). By analysing the temperature-humidity conditions in the different rooms, μAM optimises the temperature of the water produced by the chiller/HP, improving power consumption, performance and comfort.

In addition, the µAM centralises the data, such as set point, heat/cool mode and on/off for the individual fan coil and the entire system, including time bands.

Product code:

ADEC001010: with NTC probe, RTC, buzzer and backlighting ADEH001010: cwith NTC and humidity probe, RTC, buzzer and backlighting

For further information see the instruction sheet +050000740 and the manual +030220460.

Fig. 7.1

Fig. 7.m

Fig. 7.n

8. DIMENSIONS

The following are the mechanical dimensions of each component in the μC^2SE controller; all the values are expressed in millimetres.

Note: the dimensions include the free connectors inserted.

MCH20000* μC²SE panel mounting version

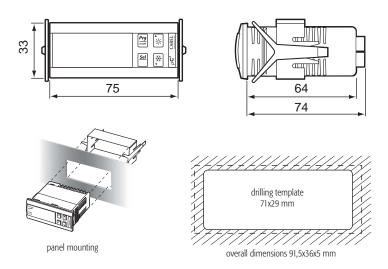
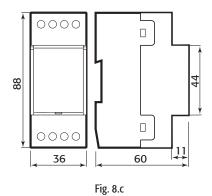
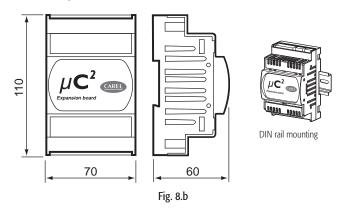
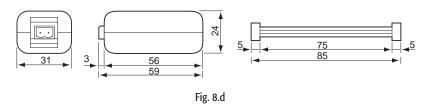
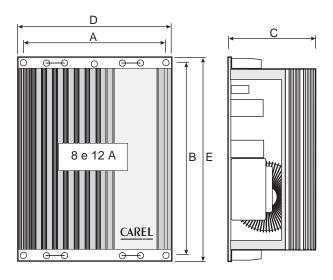
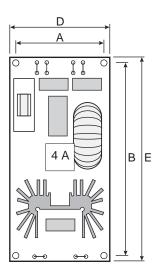




Fig. 8.a


CONVONOFF0 and CONVO/10 A modules

Expansion board for μC^2SE


RS485 serial card: codeMCH2004850



Model	A (component side)	В	C	D	E
MCHRTF04C0	43	100	40	50	107
MCHRTF08C0	75	100	58	82	107
MCHRTF12C0	75	100	58	82	107

Note: the version with screw teminals code MCHRTF*D0 is available on request

Table 8.a

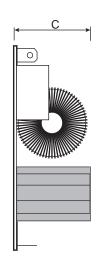
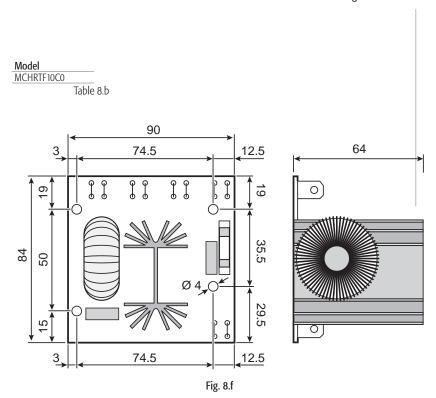
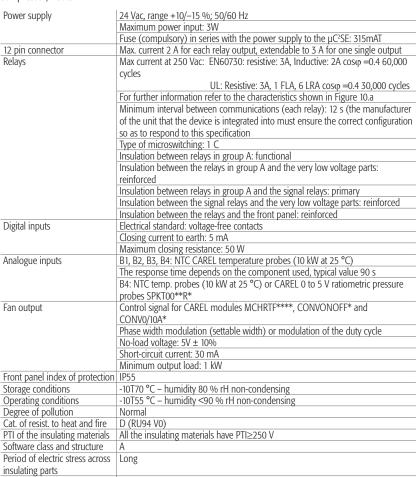



Fig. 8.e

CODES

Description	Code
μC ² SE single circuit, 2 compressors, panel mounting	MCH2000050
μC ² SE single circuit, 2 compressors, panel mounting (20 pcs. multiple package)	MCH2000051
μC ² SE expansion board for 2nd. circuit maximum 4 compressors	MCH2000020
μC ² SE expansion board for 2nd. circuit maximum 4 compressors (10 pcs. multiple package)	MCH2000021
RS485 optional board for μ C ² SE panel version	MCH2004850
Programming key for μC ² SE	PSOPZKEY00
ON/OFF fan card (only screw terminals)	CONVONOFF0
PWM - 0 to 10 V fan card (only screw terminals)	CONVO/10A0
Temperature probes for regulation or condensation control	NTC***WP00
***depending on the length (015= 1.5 m, 030= 3 m, 060=6 m)	
Pressure probes for condensing pressure control	SPK*R*
** depending on the pressure (13= 150 PSI, 23= 75 PSI, 33= 500 PSI)	
Connectors kit for code MCH2000001 (multiple package 20 pcs)	MCH2CON001
Connectors kit for code MCH2000001 (multiple package 10 pcs)	MCH2CON021
Minifit connectors kit + 1 meter length for code MCH2**	MCHSMLCAB0
Minifit connectors kit + 2 meter length for code MCH2**	MCHSMLCAB2
Minifit connectors kit + 3 meter length for code MCH2**	MCHSMLCAB3
Remote terminal for MCH20000** for panel installation MCH200TP0*	MCH200TP0*
Remote terminal for MCH20000** for wall-mounting MCH200TW0*	MCH200TW0*
Supervisor serial connection kit for remote terminal	MCH200TSV0
Fan speed PWM 4 A/230 Vac	MCHRTF04C0
Fan speed PWM 8 A/230 Vac	MCHRTF08C0
Fan speed PWM 12 A/230 Vac	MCHRTF12C0
Fan speed PWM 10 A/230 Vac 1 Pc. Nor. Ind.	MCHRTF10C0
Fan speed PWM 10 A/230 Vac 10 Pc. Nor. Ind.	MCHRTF10C1


Table 9.a

10. TECHNICAL SPECIFICATIONS AND SOFTWARE UPDATES

10.1 Technical specifications

Electrical specifications

In the following specifications "Group A" defines the grouping of the following outputs: valve, pump, compressor, heater.

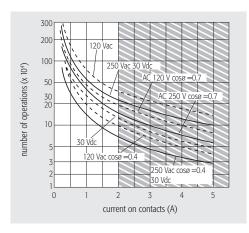


Fig. 10.a

Homologations

Nota: all the relays must have the common terminals (C1/2, C3/4, C6/7, C8/9) connected together.

CE/RU (File El98839 sez.16)

Functional characteristics

Resolution of the analogue inputs	Temperature probes: range -40T80 °C, 0.1 °C
Temperature measurement error	Range -20T20 °C, ±0.5 °C (excluding probe)
•	Range -40T80 °C, ±1.5 °C (excluding probe)
Pressure measurement error	The % error with a voltage reading with a range of input from 0.5 to 4.5
	is ± 2% (excluding probe).
	The error in the converted value may vary according to the settings of
	parameters /9, /10, /11, /12

Table 10.b

Characteristics of the connectors

The connectors may be purchased using CAREL code (MCHCONO***) or from the manufacturer Molex®

Molex® codes of the connector	Number of pins
39-01-2120	12
39-01-2140	14
	- 11

Table 10.c

Max. number of insertion/removal cycles for the connectors: 25 cycles

In addition, the pre-wired kits MCHSMLC*** are also available

Code of the contacts according to the cross-section of the connection cables to the 12- and 14-pin connectors (use the special Molex® tool code 69008-0724 for crimping

Molex® code of the contact		Cross-section of cables allowed		
	39-00-0077	AWG16 (1,308 mm ²)		
	39-00-0038	AWG18-24 (0,8230,205 mm ²)		
	39-00-0046	AWG22-28 (0,3240,081 mm ²)		

Table 10.d

MARNINGS

- If one transformer is used to supply both the µC²SE and the accessories, all the G0 terminals on the
 various controllers or the various boards must be connected to the same terminal on the secondary,
 and all the G terminals to the other terminal on the secondary, so as to avoid damaging the
 instrument;
- For use in residential environments, use shielded cable (two wires + shield earthed at both ends, AWG 20-22) for the tLAN connections (EN 55014-1).
- · Avoid short-circuits between V+ and GND so as to not damage the instrument;
- Perform all the maintenance and installation operations when the unit is not connected to the power supply;
- Separate the power cables (relay outputs) from the cables corresponding to the probes, digital inputs and serial line;
- Use a transformer dedicated exclusively to the electronic controllers for the power supply.

Protection against electric shock and maintenance warnings

The system made up of the control board (MCH200003*) and the other optional boards (MCH200002*, MCH200485*, MCHRTF****, CONVONOFF*, CONVO/10A*, EVD000040*) represents a control device to be integrated into class 1 or class 2 appliances.

The class of protection against electric shock depends on how the control device is integrated into the unit built by the manufacturer.

Disconnect power before working on the board during assembly, maintenance and replacement. The protection against short circuits must be guaranteed by the manufacturer of the appliance that the controller will be fitted on.

Maximum length of the NTC/ratiometric probe

NTC/ratiometric probe connection cables	10 m
digital input connection cables	10 m
power output connection cables	5 m
fan control output connection cables	5 m
power cables	3 m

Table 10.e

10.2 Software updates

10.2.1 Notes for version 1.1

First release.

10.2.2 Notes for version 1.2

Optimised use of the programming key.

10.2.3 Notes for version 1.3

Implemented direct current operation.

Use EXP. version 1.5 or higher.

10.2.4 Notes for version 1.4

Implemented a differential relating to the working set point for electric heaters in air- and water-source units. Implemented cooling only air-source unit with electrical heaters operating in heating mode only. Implemented new logic for the activation of the alarm relays.

Implemented new logic for the management of the high pressure alarm.

Implemented management of minimum damper opening.

Implemented damper inactivity time in freecooling or freeheating mode.

Optimised management of damper closing for minimum outlet temperature limit.

Implemented alarm reset from μAD .

10.2.5 Notes for version 1.6

Improved Modbus communication with supervisory system

10.2.6 Notes for version 1.7

Implemented second antifreeze set point (A14)

Notes:	
	_
	_
	_
	_
	-
	_

CAREL

CAREL S.p.A. Via dell'Industria, 11 - 35020 Brugine - Padova (Italy) Tel. (+39) 049.9716611 - Fax (+39) 049.9716600 e-mail: carel @ carel. com - www .carel. com

Agenzia/Agency:

µC²SE chiller process +030220416 - rel. 1.1 - 27.04.2010